
HPC Challenge Award Competition Class 2 at SC13

XcalableMP for Productivity and Performance in
HPC Challenge Award Competition Class 2

Masahiro Nakao1,a) Hitoshi Murai2 Takenori Shimosaka2 Mitsuhisa Sato1,2

1. Center for Computational Sciences, University of Tsukuba, Japan
2. RIKEN Advanced Institute for Computational Science, Japan
a) mnakao@ccs.tsukuba.ac.jp

1. Summary
In this paper, we present XcalableMP implementations of the HPCC Benchmarks, namely, High-performance Linpack (HPL), Rando-

mAccess, Fast Fourier Transform (FFT), and STREAM. Moreover, we have implemented the Himeno Benchmark [1] which is a typical
stencil application.

The highlights of this submission are as follows:
• Table 1 shows the SLOC (Source lines of code) of the implementations.
• Table 2 shows an experimental environment. We used the K computer at RIKEN AICS in Japan.
• Table 3 shows a performance summary.

Table 1 SLOC of the HPCC and the Himeno Benchmarks
HPL RandomAccess FFT STREAM Himeno

XcalableMP 306 250 239†+ 283‡+ 1,892* 66 137
Reference 8,800 938 1,130 329 380**
† We have modified some files of the optimized hpcc-1.4 FFT [2]. In addition, we have implemented

the main kernel of the FFTE.
‡ The XMP FFT directly uses some files of the optimized hpcc-1.4 FFT. These files do not change.
* The XMP FFT calls the some FFTE kernel by using C interface.
** The original Himeno Benchmark is written in Fortran90 +MPI.

Table 2 Experimental environment of the K computer

CPU SPARC64 VIIIfx 2.0 GHz, 8 Cores
Memory DDR3 SDRAM 16 GB, 64 GB/s

Network Torus fusion six-dimensional mesh/torus
network, 5 GB/s x 10

Compier Fujitsu C/Fortran Compiler K-1.2.0-14
Comm. Library Fujitsu MPI K-1.2.0-14
BLAS Fujitsu SSLII K-1.2.0-14

Table 3 Performance summary of the HPCC and the Himeno Benchmarks

Benchmark #Nodes #Cores Performance of peak
HPL 8,192 65,536 542.94 TFlops 53.02%
RandomAccess 16,384 131,072 162.63 GUP/s -
FFT 9,216 73,728 24.67 TFlops 2.14%
STREAM 8,192 65,536 331.55 TB/s 64.76%
Himeno 16,384 131,072 299.10 TFlops 14.60%

2. Overview of XcalableMP
XcalableMP [3–6], XMP for short, is a directive-based language extension for distributed memory systems, which is proposed by the

XMP Specification Working Group consists of members from academia, research laboratories, and industries. It allows users to develop
parallel applications and to tune performance with minimal and simple notation. A part of the design is based on experiences of High
Performance Fortran (HPF) [7, 8] and Coarray Fortran (CAF) [9].

The features of XMP are as follows:
• XMP supports typical parallelization under “global-view model” programming and enables parallelizing the original sequential code

using minimal modification with simple directives.
• XMP also includes a CAF-like PGAS feature as “local-view model” programming.
• The important design principle of XMP is “performance awareness”. All actions of communication and synchronization are taken

by directives or coarray syntax, different from HPF.
• XMP is defined as an extension for familiar languages, such as C and Fortran, to reduce code-rewriting and educational costs.
We have been developing an Omni XMP compiler as a prototype compiler. The Omni XMP compiler can compile an XMP C source

1

HPC Challenge Award Competition Class 2 at SC13

code and an XMP Fortran source code. Each source code and language are called XMP/C and XMP/Fortran in this paper. The Omni
XMP compiler is available at the official website [10].

3. Implementation and Performance of benchmarks

3.1 Overview
This section provides a brief overview of XMP implementations and performances of the HPCC Benchmarks and the Himeno Bench-

mark. While the [6] also describes XMP implementations of the HPCC Benchmarks except for STREAM, an implementation and
performance of FFT in this paper is improved compared to the [6].

All benchmarks were compiled using the Omni XMP compiler 0.7.0-alpha which will be available at SC13. In order to evaluate the
performances of these benchmarks, we used 16,384 compute nodes at a maximum on the K computer which consists of 82,944 compute
nodes. The specification of the K computer is shown in Table 2. All SLOCs of the implementations are excluded comments and blank
lines, but included a validation operation and a printing performance result.

3.2 HPL

3.2.1 Differences from the implementation of last year
Firstly, we changed Column-major order into Row-major order for a coefficient matrix because of improving swap operation. Secondly,

we gave an option “-mca coll tuned bcast same count 1” when executing an XMP HPL ($ mpiexec -mca coll tuned bcast same count
1 ./xmp hpl). This option improves performance of MPI Bcast() which is used in XMP library when size of sending data is the same on
each process.

3.2.2 Implementation
We implemented the XMP HPL written in XMP/C. The SLOC of the XMP HPL is 306.
The points of the implementation are as follows:
! Block-cyclic distribution

Each node distributes a coefficient matrix A[][] in a block-cyclic manner, as is the case with hpcc-1.4 HPL. In the below code, a
template directive declares a two-dimensional template t, and a node directive declares a two-dimensional node set p. A distribute
directive distributes the template t onto P × Q nodes in the same block size (where NB is the block size). Finally, an align directive
declares a global array A[][] and aligns A[][] with the template t. Fig. 1. shows the block-cyclic distribution in the below code.

1 double A[N][N];
2 #pragma xmp template t(0:N−1, 0:N−1)
3 #pragma xmp nodes p(P,Q)
4 #pragma xmp distribute t(cyclic(NB), cyclic(NB)) onto p
5 #pragma xmp align A[i][j] with t(j,i)

Fig. 1 Block cyclic distribution

! Panel broadcast by using gmove directive
The below code and Fig. 2 indicate a panel broadcast operation using the gmove directive and array section notation. The array L[][]
is also distributed in the block-cyclic manner, but only the first dimension of the array L[][] is distributed. Thus, target elements of
the array A[j+NB:N-j-NB][j:NB] (stripe block in Fig. 2) are broadcast to the array L[j+NB:N-j-NB][0:NB] that exists on each node.

3.2.3 Performance
We used the BLAS library which is parallelized with pthread automatically. We performed the XMP HPL with eight threads per pro-

cess on one node. The size of the coefficient matrix A[][] is about 70% of the system memory. Table 4 shows the performance and the
theoretical peak performance of the system. For comparison, Table 4 also shows the performance of the XMP HPL of last year. The best
performance is 542.94 TFlops in 65,536 CPU cores. This performance is approximately 53% of the theoretical peak. The performances
of this year are better than those of last year.

3.2.4 For more performance
We have implemented a new XMP HPL which uses coarray instead of gmove directive in the panel broadcast. The below code shows

2

HPC Challenge Award Competition Class 2 at SC13

1 double A[N][NB];
2 #pragma xmp align L[i][∗] with t(∗,i)
3 :
4 #pragma xmp gmove
5 L[j+NB:N−j−NB][0:NB] = A[j+NB:N−j−NB][j:NB];

U

NB

j

j+NB

N-j-NB

A[N][N] L[N][NB]

Panel Broadcast

Fig. 2 Panel broadcast

Table 4 The performances of HPL

#Nodes #Cores Performance (TFlops) of peak
XMP of this year XMP of last year XMP of this year XMP of last year

1 8 0.10 0.08 77.86% 61.8%
4 32 0.38 0.30 75.32% 58.6%

16 128 1.46 1.15 73.13% 55.9%
64 512 5.70 4.33 71.26% 52.8%

256 2,048 21.95 15.74 68.58% 48.0%
1,024 8,192 81.37 52.93 63.57% 40.3%
4,096 32,768 286.20 156.50 55.90% 29.8%
8,192 65,536 542.94 (No Data) 53.02% (No Data)

part of a code which performs “modified Increasing-ring” broadcast [13]. We think that this panel broadcast operation will improve the
performance. Now we have been evaluating this code on the K computer. We hope to have a chance to present this result on BoF at
SC13.

1 void row bcast(int n, double c[n], int start, int len, int root){ // Q is a division number of row and P is a division number of column
2 #pragma xmp coarray c:[∗][Q]
3 int col key = (xmp node num()−1)%P;
4 int row key = (xmp node num()−1)/P;
5 int send = (P > col key+1 ? col key+1 : col key+1−P);
6 int send2 = (root+2 < P ? root+2 : root+2−P);
7 int recv = (col key−1 >= 0 ? col key−1 : col key−1+P);
8 int recv2 = (col key−2 >= 0 ? col key−2 : col key−2+P);
9 if(recv2 == root) recv = recv2;

10
11 if(col key == root){
12 c[start:len]:[send][row key] = c[start:len];
13 if(send2 != col key)
14 c[start:len]:[send2][row key] = c[start:len];
15 #pragma xmp sync memory
16 #pragma xmp post(p(send,row key))
17 #pragma xmp post(p(send2,row key))
18 } else{
19 #pragma xmp sync memory
20 #pragma xmp wait(p(recv,row key))
21 if(send != root && send2 != send){
22 c[start:len]:[send][row key] = c[start:len];
23 #pragma xmp sync memory
24 #pragma xmp post(p(send,row key))
25 }
26 }
27 }

3.3 RandomAccess

3.3.1 Differences from the XMP implementation of last year
An XMP RandomAccess algorithm of this year is the same that of last year. However, in order to evaluate performance, we used

16,384 compute nodes at a maximum this year. By contrast, we used 8,192 compute nodes last year.

3.3.2 Implementation
The XMP RandomAccess is iterated over sets of CHUNK updates on each node. In each iteration, the algorithm calculates for each

update the destination node that owns the array element to be updated and communicates the data with each node. This communication
pattern is known as complete exchange or all-to-all personalized communication, which can be performed efficiently by an algorithm
referred to as the recursive exchange algorithm when the number of nodes is a power of two [11].

We implemented an algorithm with a set of remote writes to a coarray in local-view programming using XMP/C. Note that the number

3

HPC Challenge Award Competition Class 2 at SC13

of the remote writes is also sent as an additional first element of the data. A point-to-point synchronization is specified with the XMP’s
post and wait directives in order to realize asynchronous behavior of the algorithm.

The below code shows part of the XMP RandomAccess code. Line 1 declares arrays recv[][] and send[][] as coarrays. In line 18,
the variable nsend, which is the number of transfer elements, is set to the first element of array send[][] to be used by the destination
node to update its local table. In line 19, XMP/C extends the syntax of the array reference of the C language so that the “array section
notation” can be specified instead of an index. The number before the colon in square brackets (0) indicates the start index of the section
to be accessed, and the number after the colon (nsend+1) indicates its length. The number in square brackets after an array and the colon
(ipartner) indicates the node number. Thus, line 19 means that elements from send[isend][0] to send[isend][nsend] are put to those
from recv[j][0] to recv[j][nsend] in the ipartner node. In line 20, the sync memory directive is used to ensure the remote definition of a
coarray is complete. In line 21 and 27, the post and wait directives are used for point-to-point synchronization. The post directive sends
a signal to the node ipartner to inform that the remote definition for it is completed. Each node waits at the wait directive until receiving
the signal from the node jpartner.

The SLOC of the XMP RandomAccess is 250.

1 u64Int recv[MAXLOGPROCS][RCHUNK+1]:[∗], send[2][CHUNKBIG+1]:[∗];
2 ...
3 for (j = 0; j < logNumProcs; j++) {
4 nkeep = nsend = 0;
5 isend = j % 2;
6 ipartner = (1 << j) ˆ MyProc;
7 if (ipartner >MyProc) {
8 sort data(data, data, &send[isend][1], nkept, &nsend, ...);
9 if (j > 0) {

10 jpartner = (1 << (j−1)) ˆ MyProc;
11 #pragma xmp wait(p(jpartner+1))
12 #pragma xmp sync memory
13 nrecv = recv[j−1][0];
14 sort data(&recv[j−1][1], data, &send[isend][1], nrecv, &nsend, ...);
15 }
16 }
17 else { ... }
18 send[isend][0] = nsend;
19 recv[j][0:nsend+1]:[ipartner+1] = send[isend][0:nsend+1];
20 #pragma xmp sync memory
21 #pragma xmp post(p(ipartner+1), 0)
22 if (j == (logNumProcs − 1)) update table(data, Table, nkeep, ...);
23 nkept = nkeep;
24 }
25 ...
26 jpartner = (1 << (logNumProcs−1)) ˆ MyProc;
27 #pragma xmp wait(p(jpartner+1))
28 #pragma xmp sync memory
29 nrecv = recv[logNumProcs−1][0];
30 update table(&recv[logNumProcs−1][1], Table, nrecv, ...);

The latest Omni XMP compiler has been optimized for the K computer. In order to use high-speed one-sided communication on the
K computer, the coarray syntax is translated into calling the extended RDMA interface provided by the K computer.

3.3.3 Performance
We performed the XMP RandomAccess, referred to as flat-MPI, on each CPU core. The table size is equal to 1/4 of the system

memory. Table 5 shows the performance results. For comparison, we also evaluated the modified hpcc-1.4 RandomAccess, for which
the functions for sorting and updating the table are specifically optimized for the K computer. The best performance of the XMP Rando-
mAccess is 163.63 GUP/s (Giga UPdates per Second) for 131,072 CPU cores. Table 5 shows that the XMP RandomAccess and modified
hpcc-1.4 have almost the same performances.

Table 5 The performances of RandomAccess

#Nodes #Cores Performance (GUP/s)
XMP modified hpcc-1.4

1 8 0.08 0.08
8 64 0.70 0.62

64 512 2.08 2.41
512 4,096 11.41 13.55

4,096 32,768 61.43 75.08
8,192 65,536 104.31 120.24

16,384 131,072 162.63 (NO DATA)

4

HPC Challenge Award Competition Class 2 at SC13

3.4 FFT

3.4.1 Differences from the XMP implementation of last year
Firstly, we have developed and used an intrinsic transformational subroutine “XMP TRANSPOSE()” to perform high-speed matrix

transposition. Secondly, in order get better performance out of multi-core CPU, we have also used OpenMP pragma. Finally, we tune
parameters, number of processes and length of vector, to reduce cache thrashing.

3.4.2 Implementation
We parallelized a subroutine “PZFFT1D0”, which is the main kernel of the FFT. This subroutine is included in “pzfft1d.f” of the

FFTE [2] optimized for the K computer. We have developed “xmp-pzfft1d.f90” based on “pzfft1d.f”.
The below code shows part of an XMP FFT code in “xmp-pzfft1d.f90”. This code is written in XMP/Fortran and OpenMP pragma.

In line 1 to 8, the node, template, distribute, and align directives are describing the distribution of arrays in a block manner. In a
six-step FFT, a matrix transposition must be performed before one-dimensional FFT. In the XMP FFT, the matrix transposition is imple-
mented by the intrinsic transformational subroutine “XMP TRANSPOSE()” in lines 10. The “XMP TRANSPOSE()” performs all-to-all
communication and a transposition of a local matrix in each node. When performing the communication, data pack/unpack operations
are occurred internally. To improve performance, the data pack/unpack operations perform with thread-parallelization and cache-block
tuning. In line 12 to 18, both XMP loop directive and OpenMP parallel do directive are used. Firstly, XMP loop directive parallelizes
“do loop statements” in each process. Secondly, OpenMP parallel do directive parallelizes “do loop statements parallelized by XMP
loop directive” in each thread.

The SLOC of the “xmp-pzfft1d.f90” is 70. The SLOC of the “pzfft1d.f” in the FFTE is 101. Note that, we have also modified some
files of the hpcc-1.4 FFT optimized for the K computer [2]. The total SLOC of the modified files is 70 + 169. Moreover, the XMP FFT
directly uses some files of the optimized hpcc-1.4 FFT. These files do not change. The total SLOC of the files of the hpcc-1.4 FFT is 283.
In addition, the XMP FFT uses other FFTE kernels and its C Interface. The total SLOC of the files of FFTE kernels and its C Interface is
1,892. Hence, total SLOC is almost the same as the optimized hpcc-1.4 FFT, but the main kernel in “xmp-pzfft1d.f90” becomes simple.

1 !$XMP nodes p(∗)
2 !$XMP template tx(NX)
3 !$XMP template ty(NY)
4 !$XMP distribute tx(block) onto p
5 !$XMP distribute ty(block) onto p
6 !$XMP align A(∗,i) with ty(i)
7 !$XMP align B(∗,i) with tx(i)
8 !$XMP align W(∗,i) with tx(i)
9 ...

10 CALL XMP TRANSPOSE(B,A,1)
11 ...
12 !$XMP loop on tx(I)
13 !$OMP parallel do
14 DO I=1,NX
15 DO J=1,NY
16 B(J,I)=B(J,I)∗W(J,I)
17 END DO
18 END DO
19 ...

3.4.3 Performance
For using effectively cache on the K computer, we set parameters, the number of nodes and length of vector, which are not power of

two. Table 6 shows these parameters.
We performed the XMP FFT with eight threads per process on one node. For comparison, we also evaluated the modified hpcc-1.4

FFT which is optimized for the K computer. Fig. 7 shows the performances. The best performance of the XMP FFT is 25,262.23 GFlops
(24.67 TFlops) for 73,728 CPU cores. The performance of the XMP FFT is almost the same as that of the hpcc-1.4 FFT. Moreover, for
comparison, Table 8 shows the performance of the XMP FFT of last year. Table 7 and Table 8 show that the performances of the XMP
FFT of this year is better than that of last year.

Table 6 The parameters of FFT

#Nodes Length of vector Data size / System memory
36 6,635,520,000 34.3%

144 24,186,470,400 31.3%
576 99,532,800,000 32.2%

2,304 398,131,200,000 32.2%
9,216 1,528,823,808,000 30.1%

Table 7 The performances of FFT of this year

#Nodes #Cores
Performance (GFlops) of peak

XMP modified XMP modified
hpcc-1.4 hpcc-1.4

36 288 128.75 134.50 2.79% 2.91%
144 1,152 639.86 677.34 3.47% 3.67%
576 4,608 2,136.78 2,211.21 2.90% 3.00%

2,304 18,432 8,156.18 8,426.56 2.77% 2.86%
9,216 73,728 25,262.23 25,546.65 2.14% 2.17%

5

HPC Challenge Award Competition Class 2 at SC13

Table 8 The performances of FFT of last year

#Nodes #Cores
Performance (GFlops) of peak

XMP modified XMP modified
hpcc-1.4 hpcc-1.4

1 8 0.91 1.58 0.71% 1.23%
4 32 3.47 6.08 0.68% 1.19%

16 128 13.84 27.11 0.67% 1.32%
64 512 45.76 112.68 0.56% 1.37%

256 2,048 191.26 334.86 0.58% 1.02%
1,024 8,192 986.81 1,312.17 0.75% 1.00%

3.5 STREAM

3.5.1 Differences from the XMP implementation of last year
We did not implement STREAM last year.

3.5.2 Implementation
The below code shows part of an XMP STREAM code. The program is quite straightforward. Basically, a programmer only adds

XMP directives into a sequential version STREAM. Line 8 defines XMP node set p to parallelize this program. Line 14 to 15 is a main
kernel of STREAM which are the same as the original one. Line 42 gathers the performances of each process.

The SLOC of the XMP STREAM is 66.

1 #include <stdio.h>
2 #include <float.h>
3 #include <math.h>
4 #include <stdlib.h>
5 #include "xmp.h"
6 #define Mmin(a, b) (((a) < (b)) ? (a) : (b))
7 #define NTIMES 10
8 #pragma xmp nodes p(∗)
9 ...

10 void HPCC Stream(double ∗triadGBs, double ∗a, double ∗b, double ∗c, int size){
11 ...
12 for(k=0; k<NTIMES; k++) {
13 times[k] = −xmp wtime();
14 for (j=0; j<size; j++)
15 a[j] = b[j] + scalar∗c[j];
16
17 times[k] += xmp wtime();
18 }
19
20 for (k=1; k<NTIMES; k++)
21 mintime =Mmin(mintime, times[k]);
22
23 curGBs = (mintime > 0.0 ? 1.0 / mintime : −1.0);
24 curGBs ∗= 1e−9 ∗ 3 ∗ sizeof(double) ∗ size;
25 ∗triadGBs = curGBs;
26 ...
27 }
28
29 int main(int argc, char ∗∗argv){
30 double triadGBs, ∗a, ∗b, ∗c;
31
32 if(argc != 2){
33 if(xmp node num() == 1) fprintf(stderr, "./STREAM␣(number␣of␣vector)\n");
34 exit(1);
35 }
36 int size = atoi(argv[1]);
37 a = malloc(sizeof(double)∗size);
38 b = malloc(sizeof(double)∗size);
39 c = malloc(sizeof(double)∗size);
40
41 HPCC Stream(&triadGBs, a, b, c, size);
42 #pragma xmp reduction(+:triadGBs)
43
44 if(xmp node num() == 1)
45 printf("[Vector␣size␣is␣%d]␣Total␣Triad␣%.2f␣GB/s␣on␣%d␣process\n", size, triadGBs, xmp num nodes());
46
47 return 0;
48 }

3.5.3 Performance
We performed the XMP STREAM, referred to as flat-MPI, on each CPU core. The vector lengths of the arrays a[], b[], c[] is

67,108,864 which occupies 75 % of system memory on each compute node. For comparison, we also evaluated the hpcc-1.4 STREAM.

6

HPC Challenge Award Competition Class 2 at SC13

Table 9 shows the performances. The best performance of the XMP STREAM is 339,506.33 GB/s (331.55 TB/s) for 65,536 CPU cores.
Table 9 shows that the performance of the XMP STREAM is a little better that that of hpcc-1.4.

Table 9 The performances of STREAM

#Nodes #Cores Performance (GB/s) of peak
XMP hpcc-1.4 XMP hpcc-1.4

1 8 32.25 34.97 50.39% 54.64%
4 32 159.66 146.00 62.37% 57.03%

16 128 638.41 566.46 62.34% 55.31%
64 512 2,698.31 2,243.22 65.88% 54.77%

256 2,048 10,088.73 9,276.53 61.58% 56.62%
1,024 8,192 44,251.13 37,355.21 67.52% 57.00%
4,096 32,768 176,763.33 149,837.21 67.43% 57.16%
8,192 65,536 339,506.33 309,158.42 64.76% 58.97%

3.6 Himeno Benchmark

3.6.1 Differences from the XMP implementation of last year
The algorithm of the XMP Himeno Benchmark of this year is the same as that of last year. However performance of reflect directive of

the Omni XMP compiler is improved to synchronize data of overlapped region [3]. Moreover, we tune a parameter “width of overlapped
region” to use cache effectively.

3.6.2 Implementation
The Himeno Benchmark evaluates performance of incompressible fluid analysis code using the Jacobi iteration method. This bench-

mark measures performance to proceed major loops in solving the Poisson’s equation solution in Flops. To verify the result of this
benchmark, it calculates the residual of the Jacobi iteration method. The reason of selecting this benchmark is a good example of a sten-
cil application benchmark and to demonstrate parallelization by XMP shadow and reflect directives which communicate and synchronize
the overlapped regions.

The below code shows part of the XMP Himeno Benchmark code written in XMP/Fortran. In line 5, a shadow directive declares an
overlapped region of the distributed array p. The shadow directive specifies the width of the overlapped region. In line 7 and 22, the
reflect directive synchronizes data of the overlapped region onto the neighboring process before referring array p by loop iteration. This
parallelization is very simple and straightforward. Basically, a programmer only add XMP directives into a sequential version Himeno
Benchmark.

The SLOC of XMP HIMENO Benchmark is 137 where nineteen XMP directives are used. Hence the SLOC of the sequential version
Himeno Benchmark is 118. Besides, the SLOC of the original Himeno Benchmark is 380 which is written in MPI Fortran.

1 !$xmp nodes n(2,2)
2 !$xmp template t(mimax,mjmax,mkmax)
3 !$xmp distribute t(∗,block,block) onto n
4 !$xmp align (∗,j,k) with t(∗,j,k) :: p, bnd, wrk1, wrk2
5 !$xmp shadow p(0,2:1,2:1)
6 ...
7 !$xmp reflect (p)
8 DO loop = 1, nn
9 GOSA = 0.0

10 !$xmp loop (J,K) on t(∗,J,K)
11 DO K = 2, kmax−1
12 DO J = 2, jmax−1
13 DO I = 2, imax−1
14 S0 = a(I,J,K,1)∗p(I+1,J,K) + ...
15 SS = (S0∗a(I,J,K,4)−p(I,J,K))∗bnd(I,J,K)
16 GOSA = GOSA + SS ∗ SS
17 ...
18 enddo
19 enddo
20 enddo
21 ...
22 !$xmp reflect (p)
23 !$xmp reduction (+:GOSA)
24 enddo

The synchronization of the overlapped region in reflect directive internally needs data pack/unpack operations. In order to obtain
better performance, the Omni XMP compiler performs these operations with thread-parallelization [3].

7

HPC Challenge Award Competition Class 2 at SC13

3.6.3 Performance
For using cache on the K computer efficiently, we set p(0,2:1,2:1) in Line 5 as widths of the overlapped region. This line means that

the overlapped region is added to left and right sides of array p(). The width of the left side is 2, and that of the right side is 1 in second
and third dimensions of array p(). In fact, the Himeno Benchmark needs only 1 element in both sides of array p(). However, it is possible
to reduce cache thrashing by setting odd widths in one side.

We set the number of elements of array p(128, 512 × √n, 512 × √n), n is a number of processes for weak scaling. For thread-
parallelization of the XMP Himeno Benchmark, we utilized the automatic thread-parallelization feature provided by the Fujitsu Fortran
Compiler. We performed the XMP Himeno Benchmark with eight threads per process on one node. For comparison, we also evaluated
the original Himeno Benchmark [1]. Table 10 shows the performances. Moreover, for comparison, Table 10 shows the performance of
the XMP Himeno Benchmark of last year.

Table 10 The performances of Himeno Benchmark

#Nodes #Cores Performance (GFlops) of peak
XMP of this year Original XMP of last year XMP of this year Original XMP of last year

1 8 19.00 19.51 12.43 14.84% 15.24% 9.71%
4 32 67.33 61.72 39.78 13.15% 12.05% 7.77%

16 128 300.14 248.59 127.81 14.66% 12.14% 6.24%
64 512 1,200.83 1,063.19 342.82 14.66% 12.98% 4.18%

256 2,048 4,799.32 3,962.69 1,495.55 14.65% 12.09% 4.56%
1,024 8,192 19,175.58 15,855.84 5,773.18 14.63% 12.10% 4.40%
4,096 32,768 76,631.04 63,432.90 (NO DATA) 14.62% 12.10% (NO DATA)

16,384 131,072 306274.34 253730.23 (NO DATA) 14.60% 12.10% (NO DATA)

The best performance of the XMP Himeno Benchmark is 306274.34 GFlops (299.10 TFlops) for 131,072 CPU cores. The result
in Table 10 indicates that the performance of XMP is better than those of the original and last year. The reason is that XMP Himeno
Benchmark performs data pack/unpack operations for synchronization of the overlap region with thread-parallelization.

4. Conclusion
This report has investigated the productivity and the performance of the XMP PGAS language through the HPCC and the Himeno

Benchmarks. XMP has a rich set of features based on global-view and local-view model that allows users to develop applications with a
little cost.

Acknowledgment
The modification of the two functions for sorting and updating local table in RandomAccess were done in cooperation with Fujitsu

Limited. Moreover, we gratefully thank Ikuo Miyoshi who belongs to Fujitsu Limited for his valuable lecture of HPL. The study was
supported by the “Feasibility Study on Future HPC Infrastructure” project funded by the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

References
[1] The Riken Himeno CFD Benchmark. http://accc.riken.jp/2444.htm
[2] Daisuke Takahashi, Atsuya Uno, and Mitsuo Yokokawa. “An Implementation of Parallel 1-D FFT on the K computer”, IEEE 14th International Conference

on High Performance Computing and Communications, 2012
[3] Hitoshi Murai and Mitsuhisa Sato. “An Efficient Implementation of Stencil Communication for the XcalableMP PGAS Parallel Programming Language”,

7th International Conference on PGAS Programming Models, Edinburgh, Scotland, UK, October, 2013.
[4] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. “Productivity and Performance of Global-View Programming with XcalableMP PGAS

Language”, CCGrid 2012 - The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, Canada, May, 2012.
[5] Jinpil Lee. “A Study on Productive and Reliable Programming Environment for Distributed Memory System”, March, 2012.
[6] Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, and Mitsuhisa Sato. “Productivity and Performance of the HPC Challenge Benchmarks with the

XcalableMP PGAS language”, 7th International Conference on PGAS Programming Models, Edinburgh, Scotland, UK, October, 2013.
[7] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., and M.E. Zosel. “The High Performance Fortran Handbook”, MIT Press, 1994.
[8] Ken Kennedy, Charles Koelbel, and Hans Zima. “The rise and fall of High Performance Fortran: an historical object lesson”, Proceedings of the third

ACM SIGPLAN conference on History of programming languages, Pages 7-1-7-22, 2007
[9] R. Numwich and J. Reid. “Co-Array Fortran for parallel programming”. Technical Report RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.
[10] Omni XcalableMP Compiler. http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/xcalablemp/
[11] R. Ponnusamy, A. Choudhary and G. Fox. “Communication Overhead on CM5: An Experimental Performance Evaluation”, Proc. Frontiers ’92, pp.108–

115, 1992.
[12] HPC Challenge Website. http://icl.cs.utk.edu/hpcc/software/index.html
[13] HPL Algorithm. http://www.netlib.org/benchmark/hpl/algorithm.html

8

