

# Parallelization of Atomic Image Reconstruction from X-ray Fluorescence Holograms with XcalableMP

Atsushi Kubota<sup>1</sup> Tomohiro Matsushita<sup>2</sup> Naohisa Happo<sup>1</sup> <sup>1</sup>Hiroshima City University <sup>2</sup>Japan Synchrotron Radiation Research Institute (JASRI)



## Outline

- What is "X-ray Fluorescence Holography"?
- Parallelization of 3D atomic image reconstruction
- Evaluation on PC cluster
- Conclusion







JSPS Grant-in-Aid for Scientific Research on Innovative Areas

## "3D Active-Site Science"

2014-2019

Conventional techniques such as X-ray diffraction

 $\rightarrow$  Global structure analysis

Our Approach

From http://www.3d-activesite.jp

In many functional materials, the local structure of the "**dopant**," "**hetero-interface**," and "**nanomaterial**," i.e., the "**Active-Sites**" in the parent material play a vital role in the functional expression of the material

**3D Atomic Resolution Imaging** 

- Fluorescent X-rays and Photoelectron Holography
- Surface/Interface Holography
- Nano-structure Imaging



### **Experiment : Inverse Mode of X-ray Fluorescence Holography**



Intensity of X-ray fluorescence is measured while rotating samples







#### Spring-8 http://www.spring8.or.jp

Photon Factory, High energy accelerator http://www2.kek.jp/imss/pf/



大学共同利用機関法人 高エネルギー加速器研究機構









### Analysis Procedure of Atomic Image Reconstruction from X-ray Fluorescence Holograms



Long time required for Reconstruction on computer

Performance improvement needed



## A Hologram after removel of background waves





## Holograms after completion of sphere data



18500 eV









4Å





## **3D Atomic Image Reconstruction by Discrete Fourier Transform**

Detection of X-ray Fluorescence Hologram Position on the sphere *l* distance apart from sample :  $\vec{k}(l,\theta,\varphi)$ Intensity of X-ray fluorescence :  $\vec{I}_{\lambda}(\theta,\varphi)$ 

Position of atom A: O(0,0,0) Position of atom B:  $\vec{r}(x,y,z)$ 

Caluculation of image  $\chi$  at  $\vec{r}(x,y,z)$ 

Parallelizable for *X*, *Y*, *Z* Sum for  $\theta$ ,  $\varphi$ ,  $\lambda$ 

$$\chi(x, y, z) = -\sum_{\theta} \sum_{\varphi} \sum_{\lambda} I_{\lambda}(\theta, \varphi) \exp(i2\pi(|\vec{r}| - \vec{k} \cdot \vec{r})/\lambda) \sin \theta w(\lambda)$$

Superimpose multiple holograms obtained by several input X-rays with different wave lengths  $\lambda \rightarrow Reduction of ghost image$  13



- Hard to apply FFT to Reconstruction(DFT)
   Input data on the polar coordinate system
   Output image on the rectangular coordinate system
- 2D atomic image reconstruction by OpenMP
- 3D atomic image reconstruction by hybrid parallelization of XcalableMP and OpenMP



## Programming Languages / Libraries for Parallel Processing





## Parallelization of 2D Atomic Image Reconstruction by OpenMP

- Loop interchange
  - Loop nest of  $x, y, \theta, \varphi, \lambda$  to  $\lambda, x, y, \theta, \varphi$
  - Expect
    - Improvement of cache hit ratio
    - SIMDization(such as Intel SSE) by increased number of iterations of the inner most loop
- Table look up of trigonometric function
  - Some calls of trigonometric functions are replaced with references of arrays calculated before entering loop
  - Some trigonometric calls remain in the kernel loop nest
- Parallelize x loop by OpenMP



```
/* Trigonometric function calls in the loop*/
for (th=0;th<NTH;th++) {
  for (phi=0;phi<NPHI;phi++) {
    ... cos (phi)
    ... sin (phi)
  }
}</pre>
```

/\* Save trigonometric function values \*/

for (phi=0;phi<NPHI;phi++) {
 ctab[phi]=cos(phi);
 stab[phi]=sin(phi);</pre>



/\* Table loop-up in the loop \*/

for(th=0;th<NTH;th++) {
 for(phi=0;phi<NPHI;phi++) {
 ... ctab[phi]
 ... stab[th]</pre>



Parallelization of 3D Atomic Image Reconstruction by XcalableMP

- The 6 nests of loop  $\lambda$ , *z*, *x*, *y*,  $\theta$ ,  $\varphi$ 
  - Z dimension is added to 2D reconstruction
- Table loop-up of trigonometric function calls
  - same as 2D reconstruction
- Parallelize z loop by XcalableMP





## Data Declarations in XcalableMP

/\* Input hologram in0 is duplicated in the all nodes \*/

```
double in0[NTH][NPHI];
```

/\* Output image out1 is distributed among nodes \*/

```
double out1[NZ][NX][NY];
#pragma xmp nodes p(8)
#pragma xmp template t(NZ)
#pragma xmp distribute t(block) onto p
#pragma xmp align out1[z][*][*] with t(z)
```

/\* Output image out2 is duplicatged in the all nodes \*/

double out2[NZ][NX][NY];



## Parallelized Nest of Loops of 3D Atomic Image Reconstruction





## File I/O and Aggregation of Data

/\* Read input hologram in0 from file on the all nodes \*/

```
fread(in_file, in0,...);
```

```
/* Parallelized Kernel DFT Loop */
```

/\* Aggregate distributed data out1 to out2 \*/

```
#pragma xmp gmove
out2[:][:][:] = out1[:][:];
```

/\* Write atomic image out2 only on node 1 \*/

```
if(xmp_node_num()==1) {
   fwrite(out_file, out2,...);
}
```

Aggregation to avoid writing data to single file by multiple nodes



## Performance Evaluation: I/O Data

- Input data file
  - Sample: PZT
  - Incident angle1  $\,\,\theta{=}1^\circ\,\,\,{\sim}\,\,179^\circ\,$  , 1  $^\circ\,\,$  resolution
  - Incident angle 2  $\phi=0^{\circ} \sim 359^{\circ}$  , 1° resolution
  - Record measured intencity of X-ray fluorescence
  - Energy of incident X-ray
    - 18,500 eV 23,500 eV
    - 250 eV step, 21 levels of energy
- Output data file
  - 2D atomic image: 192 × 192
  - 3D atomic image: 192 × 192 × 192
  - -9.6Å ~ 9.6Å, 0.1Å resolution



#### PC cluster used for reconstruction

|                               | PC cluster                          |
|-------------------------------|-------------------------------------|
| The number of nodes           | 8                                   |
| The number of sockets / node  | 2                                   |
| CPU                           | Xeon X5660 2.8GHz                   |
| The number of cores (threads) | 6 cores (6threads, HT off)          |
| The total number of cores     | 96                                  |
| Cache size                    | L3:12MB                             |
| Inter-node network            | 4Gbps(InfiniBand DDR)               |
| XcalableMP Compiler           | 1.2.2                               |
| Compiler, Optimization        | Intel Compiler 18.0.1–O3 -<br>xHOST |
| OS                            | Linux (CentOS 6.3)                  |



#### Sample: PZT









### Break Down of Execution time

#### 3D Image (NZ,NX,NY)=(**<u>192</u>**,192,192)

|         |    | (#Nodes<br>×   |             |         |            |             | File   |
|---------|----|----------------|-------------|---------|------------|-------------|--------|
| Total   |    | #Threads/      | Execution   |         | File Input | Aggregation | Output |
| threads |    | Node)          | Time (sec.) | Speedup | (sec.)     | (sec.)      | (sec.) |
|         | 8  | (8 × 1)        | 21,683.076  | 8.000   | 0.781      | 0.176       | 9.772  |
|         | 48 | $(8 \times 6)$ | 3,623.352   | 47.874  | 0.721      | 0.163       | 9.731  |
|         | 96 | (8 × 12)       | 1,840.942   | 94.226  | 0.767      | 0.174       | 9.701  |
|         |    |                |             |         |            |             |        |



Estimated 2days with single thread

#### 3D Image (NZ,NX,NY)=(<u>8</u>,192,192)

|              | (#Nodes<br>×   |             |         |            |             | File   |
|--------------|----------------|-------------|---------|------------|-------------|--------|
|              | #Threads/      | Execution   |         | File Input | Aggregation | Output |
| Total thread | Node)          | Time (sec.) | Speedup | (sec.)     | (sec.)      | (sec.) |
| 1            | (1 × 1)        | 7,214.325   | 1.000   | 0.745      | 0.007       | 0.301  |
| 8            | (8×1)          | 923.830     | 7.809   | 0.473      | 0.009       | 0.303  |
| 12           | (1×12)         | 603.962     | 11.945  | 0.459      | 0.005       | 0.310  |
| 48           | $(8 \times 6)$ | 151.574     | 47.596  | 0.458      | 0.008       | 0.303  |
| 96           | (8×12)         | 76.576      | 94.211  | 0.455      | 0.009       | 0.310  |
|              |                |             |         |            |             |        |
|              |                |             |         |            |             |        |

From 2 hours To 1min.17sec.



### Compare XcalableMP with MPI

| Parallelization | Execution Time<br>(sec.) | Modified/Inserted<br>Lines of Code |
|-----------------|--------------------------|------------------------------------|
| XcalableMP      | 1,840.942                | 32                                 |
| MPI             | 1,817.042                | 53                                 |

3D Image (NZ,NX,NY)=(192,192,192)

96 threads execution

Higher productivity by XcalableMP than MPI w/o sacrificing performance





### Conclusion

Hybrid parallelization of 3D atomic image reconstruction from X-ray fluorescence holograms with XcalableMP and OpenMP

- PC Cluster (8nodes, 96cores in total)
  - Grid size of 3D Atomic Image (8,192,192)
    - 94x speedup by 96 threads
  - Grid size of 3D Atomic Image (192,192,192)
    - 30 min. (1,841 sec.) with 96 threads
    - Estimated 2days with single core
- Inter-node parallelization with XcalableMP
- Intra-node parallelization with OpenMP
- High productivity and performance by XcalableMP



#### Future work

Execution of 3D Atomic Image Reconstruction on supercomputers such as GPU cluster (Ito) at Kyushu University

