
Overview of XcalableMP

Sep.13-15, 2017, Maison de la Simulation, Saclay, France

Masahiro Nakao (RIKEN AICS, Japan)

Agenda in the morning session

2

Overview
XcalableMP language
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program, and execute it

Please feel free to interrupt me at any time if you have any questions.

Background

3

Distributed memory systems are widely used  
for large-scale simulations, and so on.
Message Passing Interface (MPI) is a de-facto  

standard for programming on these systems
MPI programming is a very hard work.
MPI requires numerous code changes from a serial code.

It is necessary to divide data and calculations manually among
compute nodes.

New programming language that could provide  
both high performance and high productivity has been demanded.

XcalableMP (XMP)

4

Directive-based parallel language for C and Fortran
Now XMP/C++ on the table
Proposed by XMP Specification Working Group of PC Cluster Consortium
This Working Group consists of members from

Academia: U. Tsukuba, U. Tokyo, Kyoto U. and Kyusyu U.
Research labs: RIKEN, NIFS, JAXA, JAMSTEC/ES
Industries: Fujitsu, NEC, Hitachi

The specification is available at http://xcalablemp.org

XcalableMP (XMP)

5

XMP/C
int a[100];
#pragma xmp nodes p[*]
#pragma xmp template t[100]
#pragma xmp distribute t[block] onto p
#pragma xmp align a[i] with t[i]

#pragma xmp loop on t[i] reduction(+:res)
for(int i=0;i<100;i++){
 a[i] = i;
 res += a[i];
}

integer :: a(100)
!$xmp nodes p(*)
!$xmp template t(100)
!$xmp distribute t(block) onto p
!$xmp align a(i) with t(i)

!$xmp loop on t(i) reduction(+:res)
do i=0, 100
 a(i) = i
 res = res + a(i)
end do

XMP/Fortran

The same directives can be used in both languages.

Features of XMP (1/2)

6

1. Directive-based language extension based on C and Fortran like OpenMP
Add XMP directives to a serial code
To reduce code-writing and educational costs

To reuse existing a serial code easily
2. Collaboration with MPI

To call an MPI program from an XMP program or 
to call an XMP program from an MPI program, 
XMP provides MPI programming interfaces.
This feature is to reuse existing an MPI code to develop new XMP

applications easily.

Features of XMP (2/2)

7

3. Global-view / Local-view memory models
Global-view memory model for typical parallelization using directives
Local-view memory model for one-sided communication using coarray

node1 node2 node3

Directive or
Coarray

4. Performance-aware for explicit communication,  
synchronization and work-mapping
The basic execution model of XMP is SPMD

Execution unit in XMP is called "node"
Each node executes in parallel independently
All actions occur when directive or coarray is  

encountered for being “easy-to-understand” in  
performance tuning

Basic memory model

8

Each node can directly access data on its own local memory.
To access data on remote nodes, special constructs are needed.
Directives for global-view

Coarray for local-view
Distributed data, which can be access by another node, is defined by 
directives or coarray features

Non-distributed data are replicated on all node

node1 node2 node3 node4

Non-distributed data

Distributed data

Local memory

XcalableMP (XMP)

9

XMP/C
int a[100], b[100];
#pragma xmp nodes p[*]
#pragma xmp template t[100]
#pragma xmp distribute t[block] onto p
#pragma xmp align a[i] with t[i]

integer :: a(100), b(100)
!$xmp nodes p(*)
!$xmp template t(100)
!$xmp distribute t(block) onto p
!$xmp align a(i) with t(i)

XMP/Fortran

The array a(100) is distributed by XMP directives.
But, the array b(100) is not distributed, which is replicated on all node.

Global/Local-view memory models

10

Global-view memory model
Programmer describes data/work mapping and communication
using directives

Support typical patterns for data/work mapping and communication
Indices of arrays are global and distributed among nodes

Local-view memory model
One-sided communication using coarray
Coarray of Fortran 2008
Intel, Cray, Fujitsu compilers support coarray features in Fortran

We also defines coarray features in C language as a part of XMP

Coarray communication is more flexible than XMP directive
Indices of arrays are local on each node

Agenda in the morning session

11

Overview
XcalableMP language
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

Agenda in the morning session

12

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

XMP directive rules

13

XMP/C uses the #pragma mechanism.
XMP/Fortran uses comment lines.
Examples:

#pragma xmp nodes p[4]

!$xmp nodes p(4)[F]

[C]

Subscript in square bracket is zero-origin.
Subscript in round bracket is one-origin.

p[0], p[1], p[2], p[3] are defined

p(1), p(2), p(3), p(4) are defined

The node directive defines node set.

p(3)p(1) p(2) p(4)

Directive or
Coarray

Node directive

14

Declare node array which is an execution unit set.
Declare shape and size of the node array
Examples

#pragma xmp nodes p[4]
#pragma xmp nodes p[2][4]
#pragma xmp nodes p[*]
#pragma xmp nodes p[*][4]

!$xmp nodes p(4)
!$xmp nodes p(4,2)
!$xmp nodes p(*)
!$xmp nodes p(4,*)

The “*” represents the size of the node set is automatically adjusted  
according to the total size of process.

p[0][0], p[0][1], p[0][2], p[0][3], p[1][0], p[1][1], p[1][2], p[1][3]

p(1,1), p(2,1), p(3,1), p(4,1), p(1,2), p(2,2), p(3,2), p(4,2)
The order of round bracket is based on Fortran’s (column order)

Four nodes run
Eight nodes run

The order of square bracket is based on C’s (row order)

[F][C]

must be a multiple of 4

Distributed data

15

How to declare distributed data.

Two-level data mapping with alignment and distribution

1.nodes, 2.template, 3.align, 4.distribute directives  
are used node1 node2 node3 node4

array
(e.g. int a[8];)

template
 (virtual index) node set

Arrays are aligned  
with a template. 

The template is 
distributed onto  
nodes.

Template directive

16

Declares the shape of a template, which is a virtual array as an index space
A template is used as the target of data and work alignments
Examples
#pragma xmp template t[100]

!$xmp template t(100)

t[0] t[99]

t(1) t(100)
[F]

[C]

Template directive

17

Declares the shape of a template, which is a virtual array (i.e. an index space)
A template is used as the target of data and work alignments
Examples
#pragma xmp template t[100][100]

!$xmp template t(100,100)

t[0][0] t[0][99]

t[99][0] t[99][99]
t(1,1) t(1, 100)

t(100, 1) t(100, 100)

[F]

[C]

Distribute directive

18

Distributes a template onto a node array in the specified distribution format.
Examples

!$xmp distribute t(block) onto p

template

node set

Support cyclic, block-cyclic, and non-uniform block ("gblock") can also
be specified as the distribution format.

#pragma xmp distribute t[block] onto p
[F][C]

Distribute directive

19

Example (http://xcalablemp.org/datamapping.html)

Distribute directive

20

Example (http://xcalablemp.org/datamapping.html)

Distribute directive

21

Example (http://xcalablemp.org/datamapping.html)

Distribute directive

22

Example (http://xcalablemp.org/datamapping.html)

non-uniform block

Distribute directive

23

Examples for multi-dimensional template and node set

#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][block] onto p

!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(block,block) onto p

[F][C]

Align directive

24

Aligns each element of an array with the specified element of a template.
Examples

int a[8];
#pragma xmp align a[i] with t[i]

Align the element i of an array a[] with the element i of a template t.

integer :: a(8)
!$xmp align a(i) with t[i]

int a[10][10];
#pragma xmp align a[i][j] with t[i][j]

integer :: a(10,10)
!$xmp align a(i,j) with t[i][j]

[F][C]

[F][C]

How to declare data on distributed data area.

Two-level data mapping with alignment and distribution

node, template, align. distribute directives are used

Distributed data

25

array
(e.g. int a[8];)

template
 (virtual index) node set

Arrays are aligned  
with a template. 

The template is 
distributed onto  
nodes.

#pragma xmp nodes p[4]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8];
#pragma xmp align a[i] with t[i]

[C]

How to declare data on distributed data area.

Two-level data mapping with alignment and distribution

node, template, align. distribute directives are used

Distributed data

26

array
(e.g. integer :: a(8))

template
 (virtual index) node set

Arrays are aligned  
with a template. 

The template is 
distributed onto  
nodes.

!$xmp nodes p(4)
!$xmp template t(8)
!$xmp distribute t(block) onto p
integer :: a(8)
!$xmp align a(i) with t(i)

[F]

Agenda in the morning session

27

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

Loop directive

28

Parallelizes a following loop.
Specifies which node executes each iteration of the loop  
by "aligning" each iteration with an element of a template.
An iteration "i" is to be executed by the owner node of template t[i]

#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
int a[16];
#pragma xmp align a[i] with t[i]

#pragma xmp loop on t[i]
for(int i=0;i<16;i++){
 a[i] = func(i);
}

!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16)
!$xmp align a(i) with t(i)

!$xmp loop on t(i)
do i=1, 16
 a(i) = func(i)
end do

[F][C]

Loop directive in XMP/C

29

Loop directive is inserted
before do-loop

#pragma	xmp	loop	on	t(i)

for(int	i=0;i<16;i++){

Execute do-loop in
parallel with affinity to
template

Each node computes Red elements in parallel

#pragma	xmp	nodes	p[4]

#pragma	xmp	template	t[16]

#pragma	xmp	distribute	t[block]	onto	p

#pragma	xmp	align	a[i]	with	t[i]

p[3]
p[2]
p[1]

150 1 2 3 4 5 6 7 8 9 101112 13

p[0]

14
a[16]

Loop directive in XMP/Fortran

30

Loop directive is inserted
before do-loop

!$xmp	loop	on	t(i)

do	i=1,	16

Execute do-loop in
parallel with affinity to
template

Each node computes Red elements in parallel

!$xmp	nodes	p(4)

!$xmp	template	t(16)

!$xmp	distribute	t(block)	onto	p

!$xmp	align	a(i)	with	t(i)

p(4)
p(3)
p(2)

161 2 3 4 5 6 7 8 9 10 111213 14

p(1)

15
a(16)

Loop directive in XMP/C

31

Loop directive is inserted
before do-loop

#pragma	xmp	loop	on	t(i)

for(int	i=2;i<11;i++){

Execute do-loop in
parallel with affinity to
template

Each node computes Red elements in parallel

#pragma	xmp	nodes	p[4]

#pragma	xmp	template	t[16]

#pragma	xmp	distribute	t[block]	onto	p

#pragma	xmp	align	a[i]	with	t[i]

p[3]
p[2]
p[1]

150 1 2 3 4 5 6 7 8 9 101112 13

p[0]

14
a[16]

Loop directive in XMP/Fortran

32

Loop directive is inserted
before do-loop

!$xmp	loop	on	t(i)

do	i=3,	11

Execute do-loop in
parallel with affinity to
template

Each node computes Red elements in parallel

!$xmp	nodes	p(4)

!$xmp	template	t(16)

!$xmp	distribute	t(block)	onto	p

!$xmp	align	a(i)	with	t(i)

p(4)
p(3)
p(2)

161 2 3 4 5 6 7 8 9 10 111213 14

p(1)

15
a(16)

Loop directive

33

Parallelizes the following loop(s).
Information of index is needed for a nested loop between “loop” and “on”

#pragma xmp nodes p[4][2]
#pragma xmp template t[20][20]
#pragma xmp distribute t[block][block] onto p
int a[20][20];
#pragma xmp align a[i][j] with t[i][j]

#pragma xmp loop (i,j) on t[i][j]
for(int i=0;i<20;i++){
 for(int j=0;j<20;j++){
 a[i][j] = func(i, j);
 }
}

!$xmp nodes p(2,4)
!$xmp template t(20,20)
!$xmp distribute t(block,block) onto p
integer :: a(20,20);
!$xmp align a(j,i) with t(j,i)

!$xmp loop (i,j) on t(j, i)
do i=1, 20
 do j=1, 20
 a(j,i) = func(j,i)
 end do
end do

[F][C]

Loop directive with reduction clause

34

The reduction clause
reduces the value on each node with the specified operation when  

ending the loop.
Operations: +, *, -, &, |, ^, &&, ||, max, min, firstmax, firstmin, lastmax, lastmin

#pragma xmp loop on t[i] reduction(+:s)
for(int i=0;i<20;i++){
 s = s + i;
}

!$xmp loop on t(i) reduction(+:s)
do i=1, 20
 s = s + i
end do

[F][C]

The variables s on all nodes are summed up and updated to the value when
ending the loop-statement.

Collaboration with OpenMP

35

The order of the XMP loop directive and the OpenMP directive  

does not matter.

#pragma xmp loop on t[i]
#pragma omp parallel for
for(int i=0;i<20;i++){
 a[i] = i;
}

!$xmp loop on t(i)
!$omp parallel do
do i=1, 20
 a(i) = i
end do
!$omp end parallel do

[F][C]

#pragma omp parallel for
#pragma xmp loop on t[i]
for(int i=0;i<20;i++){
 a[i] = i;
}

!$omp parallel do
!$xmp loop on t(i)
do i=1, 20
 a(i) = i
end do
!$omp end parallel do

[F][C]

Task directive

36

Assigns the following code block to the specified node(s).

#pragma xmp nodes p[*]
 :
#pragma xmp task on p[0]
{
 func_a();
}
#pragma xmp task on p[1]
{
 func_b();
}

!$xmp nodes p(*)
 :
!$xmp task on p(1)
 call func_a()
!$xmp end task

!$xmp task on p(2)
 call func_b()
!$xmp end task

[F][C]

Node p[0] executes func_a.

Node p[1] executes func_b.

Node p(1) executes func_a.

Node p(2) executes func_b.

Task directive

37

Assigns the following code block to the specified node(s).

#pragma xmp nodes p[100]
 :
#pragma xmp task on p[0:50]
{
 func_a();
}

!$xmp nodes p(100)

!$xmp task on p(1:50)
 call func_a()
!$xmp end task

[F]

[C]

p[0] to p[49] execute func_a.

p(1) to p(50) execute func_a().

node-name[base : length]

node-name(base : end)

Agenda in the morning session

38

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

bcast and reduction directives

39

bcast directive
broadcasts the specified data among nodes

#pragma xmp bcast (b)
#pragma xmp bcast (b) from p[2]

!$xmp bcast (b)
!$xmp bcast (b) from p(3)

[F][C]

reduction directive
Performs a reduction operation (+, *, max, min, …) among nodes.

#pragma xmp reduction (+:b)

!$xmp reduction (+:b)[F]

[C]

If “from” clause is omitted, the directive broadcast a variable  
located in root node (p[0] in C or p(1) in Fortran).

barrier directive

40

barrier directive
barrier operation is performed

gmove directive

41

Communication for distributed array
Programmer doesn’t need to know where each data is distributed

#pragma	xmp	gmove

a[2:4]	=	b[3:4];

p[3]
p[2]

p[1]

a[8]
0 1 2 3 4 5 6 7

p[0]

b[8]
0 1 2 3 4 5 6 7

array-name[base : length];
[C]

gmove directive

42

Communication for distributed array
Programmer doesn’t need to know where each data is distributed

!$xmp	gmove

a(3:6)	=	b(4:7)

p(4)
p(3)

p(2)

a(8)
1 2 3 4 5 6 7 8

p(1)

b(8)
1 2 3 4 5 6 7 8

array-name(base : end)

[F]

Shadow and reflect directive

43

These directives are used to develop stencil applications
Shadow directive adds shadow area to distributed array
Reflect directive updates the shadow area

#pragma	xmp	nodes	p[3]

#pragma	xmp	template	t[9]

#pragma	xmp	distribute	t[block]	onto	p

#pragma	xmp	align	a[i]	with	t[i]

#pragma	xmp	shadow	a[1:1]

...

#pragma	xmp	reflect	(a)

Add shadow areas of size one at both the lower and upper bounds of a[].

!$xmp	nodes	p(3)

!$xmp	template	t(9)

!$xmp	distribute	t(block)	onto	p

!$xmp	align	a(i)	with	t(i)

!$xmp	shadow	a(1:1)

...

!$xmp	reflect	(a)

[F][C]

The shadow directive creates a

shadow area (gray cell) at the

upper and lower bounds of array a[].

Shadow and reflect directive

44

The reflect directive synchronizes

the shadow area. The directive

generates communication between

adjacent nodes.

These directives are used to develop stencil applications
Shadow directive adds shadow area to distributed array
Reflect directive updates the shadow area

#pragma	xmp	nodes	p[3]

#pragma	xmp	template	t[9]

#pragma	xmp	distribute	t[block]	onto	p

#pragma	xmp	align	a[i]	with	t[i]

#pragma	xmp	shadow	a[1:1]

...

#pragma	xmp	reflect	(a)

Add shadow areas of size one at both the lower and upper bounds of a[].

!$xmp	nodes	p(3)

!$xmp	template	t(9)

!$xmp	distribute	t(block)	onto	p

!$xmp	align	a(i)	with	t(i)

!$xmp	shadow	a(1:1)

...

!$xmp	reflect	(a)

[F][C]

Example of shadow/reflect

45

#pragma	xmp	loop	on	t[i]

for(int	i=1;i<9;i++){

		b[i]	=	a[i-1]	+	a[i]	+	a[i+1];

}

!$xmp	loop	on	t(i)

do	i	=	2,	8

		b(i)	=	a(i-1)	+	a(i)	+	a(i+1)

end	do

[F][C]

Example of shadow/reflect

46

#pragma	xmp	shadow	a[1:1]

...

#pragma	xmp	reflect	(a)

#pragma	xmp	loop	on	t[i]

for(int	i=1;i<9;i++){

		b[i]	=	a[i-1]	+	a[i]	+	a[i+1];

}

!$xmp	shadow	a(1:1)

...

!$xmp	reflect	(a)

!$xmp	loop	on	t(i)

do	i	=	2,	8

		b(i)	=	a(i-1)	+	a(i)	+	a(i+1)

end	do

[F][C]

Example of shadow/reflect

47

#pragma	xmp	shadow	a[1:1][1:1]

!$xmp	shadow	a(1:1,1:1)[F]

[C]

#pragma	xmp	reflect	(a)

!$xmp	reflect	(a)[F]

[C]

Agenda in the morning session

48

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

Coarray in XMP/Fortran

49

XMP includes the coarray feature imported from Fortran 2008  

for the local-view programming.
Basic idea: data declared as a coarray can be accessed by  
remote nodes.
Coarray in XMP/Fortran is fully compatible with Fortran 2008.

real	a(8)

real	b(8)[*]

if(this_image()	==	1)	then

		b(6)[3]	=	b(2)	

		a(4)	=	b(3)[2]

end	if

sync	all

[F]

b() is declared as a coarray

image 1 puts b(2) to b(6) at node 3

image 1 gets b(3) from node 2 to a(4)
Synchronization

Coarray in XMP/C

50

Coarray can be used in XMP/C

Declaration
Put
Get
Synchronization

double	b[8]:[*];

b[6]:[3]	=	b[2];

real	a(8)

real	b(8)[*]

if(this_image()	==	1)	then

		b(6)[3]	=	b(2)	

		a(4)	=	b(3)[2]

end	if

sync	all

a[4]	=	b[3]:[2];

void	xmp_sync_all(int	*status);

double	a[8];

double	b[8]:[*];

if(xmpc_this_image()	==	1){

		b[6]:[3]	=	b[2];

		a[4]	=	b[3]:[2];

}

xmpc_sync_all(NULL);

[F][C]

Subarray in XMP/C

51

To put/get multiple elements, XMP/C provides the subarray

The syntax is the same as that in Intel Cilk and OpenACC

if(xmpc_this_image()	==	1){

		a[10:5]:[3]	=	b[0:5];

		a[10:5:2]:[3]	=	b[0:5:2];

		a[:]:[3]	=	b[:];

}

[C]

array-name[base : length : step]

b[0]-b[4] elements are put to
a[10]-a[14] elements at image 3

b[0], b[2], b[4], b[6], and b[8] elements
are put to a[10], a[12], a[14], a[16],
and a[18] elements at image 3

All elements of b[] are put to
all elements of a[] at image 3

Subarray in XMP/Fortran

52

The subarray is the same as normal subarray in Fortran

if(this_image()	==	1)	then

		a(10:14)[3]	=	b(1:5)

		a(10:18:2)[3]	=	b(1:9:2)

		a(:)[3]	=	b(:)

end	if

[F]

array-name[base : last : step]

b(1)-b(5) elements are put to
a(10)-a(14) elements at image 3

b(1), b(3), b(5), b(7), and b(9) elements
are put to a(10), a(12), a(14), a(16),
and a(18) elements at image 3

All elements of b() are put to
all elements bf a() at image 3

Agenda in the morning session

53

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

Omni Compiler

54

Support XMP, OpenACC, XcalableACC
Developed by RIKEN AICS and University of Tsukuba, Japan
Open Source Software on GitHub
Source-to-source Compiler
The latest version 1.2.1 is available at http://omni-compier.org

Omni Compiler

55

Omni XMP compiler = Translator + Runtime
In the runtime, global-view functions are implemented in MPI
In the runtime, local-view functions are implemented in MPI,  
GASNet, or FJRDMA
User selects one of them in installation

Agenda in the morning session

56

Overview
XcalableMP language
Global-view
Declare distributed array
Parallelize loop statement
Perform communication

Local-view
Omni XcalableMP compiler
How to install Omni XcalableMP compiler (Hands-on)
Create Hello World program

Install Omni Compiler

57

Please visit http://omni-compiler.org
Download the latest version omni-compiler-1.2.1
Expand the archive on the cluster
$ tar xvfj omnicompiler-1.2.1.tar.bz2
Install
$ module load intelmpi/5.0.1
$ cd omnicompiler-1.2.1
$./configure --prefix=(your install path)
$ make
$ make install
$ export PATH=(your install path)/bin:$PATH

Hello World

58

program	hello

!$xmp	nodes	p(*)

write(*,*)	"Hello	World	on	node	",	

xmp_node_num()

end	program

[F]

#include	<stdio.h>

#include	<xmp.h>

#pragma	xmp	nodes	p[*]

int	main(){

		printf("Hello	World	on	node	%d\n", 
		xmpc_node_num());

		return	0;

}

[C]

$	xmpcc	hello.c	-o	hello

$	mpirun	-np	2	./hello

$	xmpf90	hello.f90	-o	hello

$	mpirun	-np	2	./hello

$	emacs	hello.c $	emacs	hello.f90

