
Sangmin	Seo

Assistant	Computer	Scientist
Argonne	National	Laboratory

sseo@anl.gov

November	7,	2016

User-Level Threads and OpenMP

Top500 Supercomputers Today
1. Sunway	TaihuLight (Sunway	MPP):
2. Tianhe-2	(Intel	Xeon	+	Xeon	Phi):
3. Titan	(Cray	XK7	+	Nvidia K20x):
4. Sequoia	(BlueGene/Q):
5. K	computer	(SPARC64):
6. Mira	(BlueGene/Q):

10,646,600	cores
3,120,000	cores
560,640	cores

1,572,864	cores
705,024	cores
786,432	cores

Number	of	cores	per	socket	in	Top500 Total	number	of	cores		in	Top500	rank	#1
4th	XMP	Workshop	(11/7/2016) 2

0%

20%

40%

60%

80%

100%
1 2 4 6 8 10 12 14-

0K

2,000K

4,000K

6,000K

8,000K

10,000K

12,000K

To
ta
l	N

um
be

r	o
f	C

oe
rs

Massive On-node Parallelism

• To	address	massive	on-node	parallelism,	
the	number	of	work	units	(e.g.,	threads)	
must	increase	by	100X

• MPI+OpenMP is	sufficient	for	many	
apps,	but	implementation	is	poor
– Today	MPI+OpenMP ==	MPI+Pthreads

• Pthread	abstraction	is	too	generic,	
not	suitable	for	HPC
– Lack	of	fine-grained	scheduling,	memory	

management,	network	management,	
signaling,	etc.

• Better	runtime	can	significantly	improve	
MPI+OpenMP performance	and	support	
other	emerging	programming	models

core

MPI	process	with	many	
OpenMP threads

4th	XMP	Workshop	(11/7/2016) 3

Outline

• Motivation
• User-Level	Threads	(ULTs)
• Argobots
• BOLT:	OpenMP over	Lightweight	Threads
• Summary

4th	XMP	Workshop	(11/7/2016) 4

User-Level Threads (ULTs)

• What	is	user-level	thread	(ULT)?
– Provides	thread	semantics	in	user	space
– Execution	model:	cooperative	timesharing

• More	than	one	ULT	can	be	mapped	to	a	single	kernel	
thread

• ULTs	on	the	same	OS	thread	do	not	execute	in	parallel
– Can	be	implemented	with	coroutines

• Enable	explicit	suspend	and	resume	of	its	progress	by	
preserving	execution	state

• Some	languages	such	as	Python	and	Go	use	coroutines for	
asynchronous	I/O

tim
eline

Context
switch

Context
switch

ULT1

ULT2

Core Core Core Core Core Core Core Core

ULTs :

Kernel threads :

4th	XMP	Workshop	(11/7/2016) 5

User-Level Threads (ULTs)

• Why	ULTs?
– Conventional	threads	(e.g.,	Pthreads)	are	too	expensive	to	

express	massive	parallelism
– If	we	create	Pthreads	more	than	# of	cores	

(i.e.,	oversubscription):
• Context-switch	and	synchronization	overhead	will	increase	
dramatically

– ULTs	can	mitigate	high	overhead	of	Pthreads	but	need	explicit	
control

• Where	to	use?
– To	better	overlap	computation	and	communication/IO

• Low	context-switching	overhead	of	ULTs	can	give	more	opportunities	
to	hide	communication/IO	latency

– To	exploit	fine-grained	task	parallelism
• Lightweight	ULTs	are	more	suitable	to	express	massive	task	parallelism

U

U

U

OS
thread

4th	XMP	Workshop	(11/7/2016) 6

Pthreads vs. ULTs

• Average	time	for	creating	and	joining	one	thread
• Pthread:	6.6us	- 21.2us	(avg.	34,953	cycles)
• ULT	(Argobots):	78ns	- 130ns	(avg.	191	cycles)
• ULT	is	64x	- 233x	faster than	Pthread

– How	fast	is	ULT?
• L1$	access:	1.112ns,	L2$	access:	5.648ns,	memory	access:	18.4ns
• Context	switch	(2	processes):	1.64us

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048

Av
g.
	C
re
at
e&

Jo
in
Ti
m
e/
th
re
ad

	
(n
s)

Number	of	Threads

Pthread ULT	(Argobots)

*	measured	using	LMbench3

4th	XMP	Workshop	(11/7/2016) 7

Growing Interests in ULTs

• ULT	and	task	libraries
– Converse	threads,	Qthreads,	MassiveThreads,	Nanos++,	

Maestro,	GnuPth,	StackThreads/MP,	Protothreads,	Capriccio,	
StateThreads,	TiNy-threads,	etc.

• OS	supports
– Windows	fibers,	Solaris	threads

• Language	and	programming	models
– Cilk,	OpenMP task,	C++11	task,	C++17	coroutine proposal,		

Stackless Python,	Go	coroutines,	etc.

• Pros
– Easy	to	use	with	Pthreads-like	interface

• Cons
– Runtime	tries	to	do	something	smart	(e.g.,	work-stealing)
– This	may	conflict	with	the	characteristics	and	demands	of	

applications

4th	XMP	Workshop	(11/7/2016) 8

Argobots

Overview
• Separation	of	mechanisms	and	policies
• Massive	parallelism

– Exec.	Streams guarantee	progress
– Work	Units execute	to	completion

• User-level	threads	(ULTs)	vs.	Tasklets
• Clearly	defined	memory	semantics

– Consistency	domains
• Provide	Eventual	Consistency

– Software	can	manage	consistency

Argobots	Innovations
• Enabling	technology,	but	not	a	policy	maker

– High-level	languages/libraries	such	as	
OpenMP	or	Charm++	have	more	
information	about	the	user	application	
(data	locality,	dependencies)

• Explicit	model:	
– Enables	dynamism,	but	always	managed	

by	high-level	systems

Argobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

U User-Level Thread T TaskletLightweight
Work Units

Ex
ec

ut
io

n
St

re
am

Private pool Private poolShared pool

U U

U T

TTU TU

Ex
ec

ut
io

n
St

re
am

Ex
ec

ut
io

n
St

re
am

A	lightweight	low-level	threading	and	tasking	framework
(http://www.mcs.anl.gov/argobots/)

9

*	Current	team	members:	Pavan	Balaji,	Sangmin	Seo,	Halim Amer (ANL),	L.	Kale,	Nitin	Bhat (UIUC)

4th	XMP	Workshop	(11/7/2016)

Argobots Execution Model

• Execution	Streams	(ES)
– Sequential	instruction	stream

• Can	consist	of	one	or	more	work	units
– Mapped	efficiently	to	a	hardware	

resource
– Implicitly	managed	progress	semantics

• One	blocked	ES	cannot	block	other	ESs

• User-level	Threads	(ULTs)
– Independent	execution	units	in	user	

space
– Associated	with	an	ES	when	running
– Yieldable	and	migratable
– Can	make	blocking	calls

• Tasklets
– Atomic	units	of	work
– Asynchronous	completion	via	

notifications
– Not	yieldable,	migratable	before	

execution
– Cannot	make	blocking	calls

S

Scheduler Pool

U

ULT

T

Tasklet

E

Event

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots Execution Model

...

ESn

• Scheduler
– Stackable	scheduler	with	pluggable	

strategies
• Synchronization	primitives

– Mutex,	condition	variable,	barrier,	future
• Events

– Communication	triggers

4th	XMP	Workshop	(11/7/2016) 10

Explicit Mapping ULT/Tasklet to ES

• The	user	needs	to	map	work	units	to	ESs
• No	smart	scheduling,	no	work-stealing	unless	the	user	wants	

to	use

ES1

U0

U1

T1

T2

U2

U3

ES2

U4

U5

• Benefits
– Allow	locality	optimization

• Execute	work	units	on	the	same	ES

– No	expensive	lock	is	needed	
between	ULTs	on	the	same	ES

• They	do	not	run	in	parallel
• A	flag	is	enough

4th	XMP	Workshop	(11/7/2016) 11

Stackable Scheduler with Pluggable Strategies

• Associated	with	an	ES
• Can	handle	ULTs	and	tasklets
• Can	handle	schedulers

– Allows	to	stack	schedulers	hierarchically
• Can	handle	asynchronous	events
• Users	can	write	schedulers

– Provides	mechanisms,	not	policies
– Replace	the	default	scheduler

• E.g.,	FIFO,	LIFO,	Priority	Queue,	etc.
• ULT	can	explicitly	yield	to another	ULT

– Avoid	scheduler	overhead

Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

U S U U U

yield() yield_to(target)

4th	XMP	Workshop	(11/7/2016) 12

Performance: Create/Join Time

• Ideal	scalability
– If	the	ULT	runtime	is	perfectly	scalable,	the	time	should	be	the	same	

regardless	of	the	number	of	ESs

10

100

1000

10000

1 2 4 8 16 24 32 36 40 48 56 64 72

Cr
ea
te
/J
oi
n	
Ti
m
e	
pe

r	U
LT
	(c
yc
le
s)

Number	of	Execution	Streams	(Workers)

Qthreads MassiveThreads	(H) MassiveThreads	(W)

Argobots	(ULT) Argobots	(Tasklet)

4th	XMP	Workshop	(11/7/2016) 13

Argobots’ Position

Node	OS

Argobots Comm.	Lib.

High-Level Programming Models/Libraries
Domain Specific	Languages	(DSLs)

Applications

...

Node	OS

Argobots Comm.	Lib.

Argobots	is	a	low-level	threading/tasking	runtime!

4th	XMP	Workshop	(11/7/2016) 14

Argobots Ecosystem

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots

...

ESn

MPI+Argobots

ULT

ES

ULT

ES

MPI

Argobots runtime

Communication
libraries

Charm++

Applications

Charm++	
Cilk “Worker”

Argobots	ES

RWS	ULT

Fused	ULT	1

Fused	ULT	2

Fused	ULT	N

…
CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP Mercury	RPC

Origin

Target

RPC	proc

RPC	proc

OmpSs

TASCEL,	XMP,	ROSE,	GridFTP,	Kokkos,	RAJA,	etc.More
Connections

4th	XMP	Workshop	(11/7/2016) 15

OpenMP

• Directive	based	programming	model
• Commonly	used	for	shared-memory	programming	in	a	node
• Many	different	implementations

– Typically	on	top	of	Pthreads	library
– Intel,	GCC,	Clang,	IBM,	etc.

Sequential	code
for (i = 0; i < N; i++) {

do_something();
}

OpenMP	code
#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

zz

zzzz

164th	XMP	Workshop	(11/7/2016)

Nested Parallel Loop: Microbenchmark

17

A	thread	for	each	CPU	is	created
by	default

Each	thread	executes	a	portion

Each	thread	creates	more	threads
for	the	second	loop

Each	inner	thread	executes	a	portion

int in[1000][1000], out[1000][1000];

#pragma omp parallel for

for (i = 0; i < 1000; i++) {

lib_compute(i);

}

lib_compute(int x)

{

#pragma omp parallel for

for (j = 0; j < 1000; j++)

out[x][j] = compute(in[x][j]);

}

Contribution:	Adrian	Castello	(Universitat Jaume I)

4th	XMP	Workshop	(11/7/2016)

Nested Parallel Loop: Implementations

• GCC
– Does	not	reuse	the	idle	threads	in	nested	parallel	constructs
– All	thread	teams	inside	a	parallel	region	need	to	be	created

• ICC
– Reuse	idle	threads

• If	there	are	not	more	threads	available,	new	threads	are	created
• All	created	threads	are	OS	threads	and	add	overhead

• Implementation	using	Argobots
– Creates	ULTs	or	tasklets for	both	outer	loop	and	inner	loop

18

ES	0

ES	N-1
…

WU

Outer	loop	synchronization	point

…

…

S

S

S

S

WU

WU

WU WU

WU WU WU

One	ES	for	each	core
Work	unit	for	the	outer	loop

Each	work	unit	executes	a	portion	of	the	inner	loop

Inner	loop	synchronization	point

4th	XMP	Workshop	(11/7/2016)

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

ICC/Pthreads ICC/Argobots	ULTs ICC/Argobots	tasks

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

GCC/Pthreads GCC/Argobots	ULTs GCC/Argobots	tasks

Nested Parallel Loop: Performance

GCC	OpenMP	implementation	does	not	
reuse	idle	threads	in	nested	parallel	
regions,	all	the	teams	of	threads	need	to	
be	created	in	each	iteration

Execution	time	for	36	threads	in	the	outer	loop

Some	overhead	is	added	by	creating	
ULTs	instead	of	tasks

Lower	is	
better

Lower	is	
better

194th	XMP	Workshop	(11/7/2016)

Nested Parallel Loop: Analysis

• How	does	each	implementation	manage	the	threads	in	nested	
parallel	regions?

Imple. #	Created	Threads #	Reused	Threads # Created	
ULTs

# Created	
Tasks

GCC C	+	N*(T-1) =	35,036 0 --- ---

ICC C	+	C*(T-1)	=	1,296 (N-C)*(T-1) =	33,740 --- ---

Argobots tasks C	=	36 0 C	=	36 N*T	=	36,000

§ Parameters:
• C:	number	of	cores	(or	threads	created	by	user	at	the	beginning)
• N:	number	of	iterations	of	the	outer	loop
• M:	number	of	iterations	of	the	inner	loop
• T:	number	of	threads	for	the	inner	loop

Sequential	creation Parallel	creation

Example	->	C:	36,	N:	1,000,	M:	1,000,	T:36

204th	XMP	Workshop	(11/7/2016)

BOLT: A Lightning-Fast OpenMP Implementation

• About	BOLT
– BOLT	is	a	recursive	acronym	that	stands	for	

"BOLT	is	OpenMP over	Lightweight	Threads"
– https://www.mcs.anl.gov/bolt/

• Objective
– OpenMP framework	that	exploits	lightweight	threads	and	tasks

21

Improved	Nested	Massive	Parallelism

Enhanced	Fine-Grained	Task	Parallelism

Better	Interoperability	with	MPI	and	
Other	Internode	Programming	Models

4th	XMP	Workshop	(11/7/2016)

Approach & Development

• Basic	approach
– Compiler	simply	generates	runtime	API	calls,	while	the	runtime	

creates	ULTs/tasklets and	manages	them	over	a	fixed	set	of	
computational	resources

– Use	Argobots as	the	underlying	threading	and	tasking	mechanism
– ABI	compatibility	with	Intel	OpenMP compilers,	LLVM/Clang,	and	GCC	

(i.e.,	can	be	used	with	these	compilers)
• Development

– Runtime
• Based	on	Intel	OpenMP Runtime	API
• Generates	Argobots	work	units	from	OpenMP pragmas
• Can	generate	ULTs	or	tasklets depending	on	code	characteristics

– Compiler	(planned)
• LLVM/Clang
• Passes	characteristics	of	parallel	region	or	task	(e.g.,	existence	of	blocking	

calls)	to	the	runtime
• Extends	pragmas	with	the	option	“nonblocking”

224th	XMP	Workshop	(11/7/2016)

BOLT Execution Model

• OpenMP threads	and	tasks	are	translated	into	Argobots	work	units	
(i.e.,	ULTs	and	tasklets)

• Shared	pools	are	utilized	to	handle	nested	parallelism
• A	customized	Argobots	scheduler	manages	scheduling	of	work	units	

across	execution	streams

23

T TU T

OpenMP

Argobots

U

ULT

T

Tasklet

#pragma	omp parallel #pragma	omp task

U U

Execution
Stream

CPU	core

Private
Pool

U TU T U
Shared
Pool

CPU

OpenMP
threads

OpenMP
tasks

4th	XMP	Workshop	(11/7/2016)

Prototype Implementation of BOLT Runtime

• Based	on	Intel’s	open-source	OpenMP runtime
– http://openmp.llvm.org/

• Kept	the	original	runtime	API	for	the	ABI	compatibility
• Designed	and	implemented	the	threading	layer	using	

Argobots and	modified	the	runtime	internal	layer

24

Threading	Layer

Pthreads

Runtime	API	Layer

Runtime	Internal	Layer

Argobots

4th	XMP	Workshop	(11/7/2016)

OpenMP Pragma Translation

1. A	set	of	N threads	is	created	at	run	time
– If	they	have	not	been	created	yet
– Commonly	as	many	as	the	number	of	CPU	cores

2. The	number	of	iterations	is	divided	between	all	the	threads
3. A	synchronization	point	is	added	after	the	for	loop

– Implicit	barrier	at	the	end	of	parallel	for

#pragma omp parallel for (1,2)
for (i = 0; i < N; i++) {

do_something();
} (3)

254th	XMP	Workshop	(11/7/2016)

OpenMP Compiler & BOLT Runtime

__kmpc_fork_call(…){

}

__kmp_fork_call(…)

__kmp_join_call(…)

Intel	OpenMP	Runtime	API

• Create	Execution	Streams	(if	needed)
• Add	a	ULT	or	tasklet	to	each	ES
• Launch	the	work

• Join work	units	created

BOLT	runtime

#pragma	omp	parallel
Clang	and	Intel	compiler

264th	XMP	Workshop	(11/7/2016)

parallel for

#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

Creates	threads

Divides	all	iterations	among	threads

Synchronization	point

ES	0

ES	1

ES	K

…

WU

WU

WU

Each	work	unit	executes	
a	portion	of	the	for	loop

Implementation	using	Argobots

S

S

S

A	synchronization	point	is	added

One	Execution	Stream
for	each	CPU core
(or	hardware	thread)

274th	XMP	Workshop	(11/7/2016)

OpenUH OpenMP Validation Suite 3.1

GCC 6.1 ICC	17.0.0 +	
Intel	OpenMP

ICC 17.0.0	+	
BOLT	runtime	
(Argobots)

BOLT	(clang	+	
Argobots)

#	of	tested	OpenMP
constructs 62 62 62 62

#	of	used	tests 123 123 123 123

#	of	successful tests 118 118 122 112

#	of	failed	tests 5 5 1 1

Pass	rate	(%) 95.9 95.9 99.2 99.2

28

• The	BOLT	prototype	functionally	works	well!

4th	XMP	Workshop	(11/7/2016)

Nested Parallel Loop Microbenchmark

29

10

100

1000

10000

100000

1000000

10000000

100000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ex
ec
ut
io
n	
Ti
m
e	
(u
s)

#	of	Threads	for	the	Inner	Loop

gcc	6.1.0 icc	17.0.0 BOLT	(ULT) BOLT	(ULT+tasklet) Argobots	(ULT)

*	The	number	of	threads	for	the	outer	loop	was	fixed	at	36.

4th	XMP	Workshop	(11/7/2016)

Application Study: KIFMM

• Kernel-Independent	Fast	Multipole	Method	(KIFMM)
– Offload	dgemv operations	to	Intel	MKL

• Evaluated	the	efficiency	of	the	nested	parallelism	support	in	Intel	OpenMP
and	BOLT	during	the	Downward	stage
– 9	threads	for	the	application	(outer	parallel	region)

30

0

2

4

6

8

10

12

14

1 2 4 8

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

#	of	Threads	for	Intel	MKL

IntelOMP:core-close IntelOMP:core-true IntelOMP:no-binding BOLT

4th	XMP	Workshop	(11/7/2016)

Application Study: ACME mini-app

• ACME	(Accelerated	Climate	Modeling	for	Energy)
– Implementing	additional	levels	of	parallelism	through	OpenMP

nested	parallel	loops	for	upcoming	many-core	machines
• Preliminary	results	of	testing	the	transport_semini-app	version	

of	HOMME	(ACME’s	CAM-SE	dycore)

31

0%

20%

40%

60%

80%

100%

120%

H=16,	V=1 H=8,	V=2 H=4,	V=4 H=4,	V=8 H=8,	V=4

N
or
m
al
ize

d	
Ex
ec
ut
io
n	
Ti
m
e	
(%

)

ACME	mini-app	(transport_se)

ICC	+	Intel	OpenMP	(15.0.0) ICC	+	BOLT	(Argobots)

Lower	is	better
(up	to	3.16x	

faster)

oversubscription

4th	XMP	Workshop	(11/7/2016)

Summary

• Massive	on-node	parallelism	is	inevitable
– Need	runtime	systems	utilizing	such	parallelism

• User-level	threads	(ULTs)
– Lightweight	threads	more	suitable	for	fine-grained	dynamic	

parallelism	and	computation-communication	overlap
• Argobots

– A	lightweight	low-level	threading/tasking	framework
– Provides	efficient	mechanisms,	not	policies,	to	users	(library	

developers	or	compilers)
• They	can	build	their	own	solutions

• BOLT:	OpenMP over	Lightweight	Threads
– More	efficient	support	of	nested	parallelism	with	Argobots	ULTs	

and	tasklets
– Preliminary	results	show	that	BOLT	is	promising

4th	XMP	Workshop	(11/7/2016) 32

Argo Concurrency Team

• Argonne	National	Laboratory	(ANL)
– Pavan Balaji (co-lead)
– Sangmin	Seo
– Abdelhalim Amer
– Pete	Beckman	(PI)

• University	of	Illinois	at	Urbana-Champaign	(UIUC)
– Laxmikant Kale	(co-lead)
– Marc	Snir
– Nitin	Kundapur Bhat

• University	of	Tennessee,	Knoxville	(UTK)
– George	Bosilca
– Thomas	Herault
– Damien	Genet

• Pacific	Northwest	National	Laboratory	(PNNL)
– Sriram Krishnamoorthy

Past	Team	Members:
• Cyril	Bordage (UIUC)
• Prateek Jindal	(UIUC)
• Jonathan	Lifflander (UIUC)
• Esteban	Meneses

(University	of	Pittsburgh)
• Huiwei Lu	(ANL)
• Yanhua Sun	(UIUC)

4th	XMP	Workshop	(11/7/2016) 33

BOLT Collaborations

• Maintainers
– Argonne	National	Laboratory

• Sangmin Seo
• Abdelhalim Amer
• Pavan Balaji

• Contributors
– Universitat Jaume I	de	Castelló

• Adrián Castelló
• Rafael	Mayo
• Enrique	S.	Quintana-Ortí

– Barcelona	Supercomputing	Center	(BSC)
• Antonio	J.	Peña
• Jesus	Labarta

– RIKEN
• Jinpil Lee
• Mitsuhisa Sato

344th	XMP	Workshop	(11/7/2016)

Try Argobots & BOLT

• Argobots
– http://www.mcs.anl.gov/argobots/
– git repository

• https://github.com/pmodels/argobots
– Wiki

• https://github.com/pmodels/argobots/wiki
– Doxygen

• http://www.mcs.anl.gov/~sseo/public/argobots/

• BOLT
– http://www.mcs.anl.gov/bolt/
– git repository

• https://github.com/pmodels/bolt-runtime

354th	XMP	Workshop	(11/7/2016)

Funding Acknowledgments
Funding	Grant	Providers

Infrastructure	Providers

4th	XMP	Workshop	(11/7/2016)

Programming Models and Runtime Systems Group
Group	Lead
– Pavan	Balaji	(computer	scientist	and	group	

lead)

Current	Staff	Members
– Abdelhalim Amer (postdoc)
– Yanfei Guo (postdoc)
– Rob	Latham	(developer)
– Lena	Oden	(postdoc)
– Ken	Raffenetti (developer)
– Sangmin Seo (assistant	computer	scientist)
– Min	Si	(postdoc)

Past	Staff	Members
– Antonio	Pena	(postdoc)
– Wesley	Bland	(postdoc)
– Darius	T.	Buntinas (developer)
– James	S.	Dinan (postdoc)
– David	J.	Goodell (developer)
– Huiwei Lu	(postdoc)
– Min	Tian	(visiting	scholar)
– Yanjie Wei	(visiting	scholar)
– Yuqing Xiong (visiting	scholar)
– Jian	Yu	(visiting	scholar)
– Junchao Zhang	(postdoc)
– Xiaomin Zhu	(visiting	scholar)

– Ashwin Aji (Ph.D.)
– Abdelhalim Amer (Ph.D.)
– Md.	Humayun Arafat	(Ph.D.)
– Alex	Brooks	(Ph.D.)
– Adrian	Castello (Ph.D.)
– Dazhao Cheng	(Ph.D.)
– Hoang-Vu	Dang	(Ph.D.)
– James	S.	Dinan (Ph.D.)
– Piotr Fidkowski (Ph.D.)
– Priyanka	Ghosh	(Ph.D.)
– Sayan Ghosh (Ph.D.)
– Ralf	Gunter	(B.S.)
– Jichi Guo (Ph.D.)
– Yanfei Guo (Ph.D.)
– Marius	Horga (M.S.)
– John	Jenkins	(Ph.D.)
– Feng Ji (Ph.D.)
– Ping	Lai	(Ph.D.)
– Palden Lama	(Ph.D.)
– Yan	Li	(Ph.D.)
– Huiwei Lu	(Ph.D.)
– Jintao	Meng (Ph.D.)
– Ganesh	Narayanaswamy (M.S.)
– Qingpeng Niu (Ph.D.)
– Ziaul Haque Olive	(Ph.D.)

– David	Ozog (Ph.D.)
– Renbo Pang	(Ph.D.)
– Nikela Papadopoulou (Ph.D)
– Sreeram Potluri (Ph.D.)
– Sarunya Pumma (Ph.D)
– Li	Rao (M.S.)
– Gopal Santhanaraman (Ph.D.)
– Thomas	Scogland (Ph.D.)
– Min	Si	(Ph.D.)
– Brian	Skjerven (Ph.D.)
– Rajesh	Sudarsan (Ph.D.)
– Lukasz	Wesolowski (Ph.D.)
– Shucai Xiao	(Ph.D.)
– Chaoran Yang	(Ph.D.)
– Boyu Zhang	(Ph.D.)
– Xiuxia Zhang	(Ph.D.)
– Xin	Zhao	(Ph.D.)

Advisory Board
– Pete	Beckman	(senior	scientist)
– Rusty	Lusk	(retired,	STA)
– Marc	Snir (division	director)
– Rajeev	Thakur	(deputy	director)

Current	and	Recent	Students

4th	XMP	Workshop	(11/7/2016)

Q&A

• Thank	you	for	your	attention!

Questions?

4th	XMP	Workshop	(11/7/2016)

