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Top500 Supercomputers Today
1. Sunway	TaihuLight (Sunway	MPP):
2. Tianhe-2	(Intel	Xeon	+	Xeon	Phi):
3. Titan	(Cray	XK7	+	Nvidia K20x):
4. Sequoia	(BlueGene/Q):
5. K	computer	(SPARC64):
6. Mira	(BlueGene/Q):

10,646,600	cores
3,120,000	cores
560,640	cores

1,572,864	cores
705,024	cores
786,432	cores

Number	of	cores	per	socket	in	Top500 Total	number	of	cores		in	Top500	rank	#1
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Massive On-node Parallelism

• To	address	massive	on-node	parallelism,	
the	number	of	work	units	(e.g.,	threads)	
must	increase	by	100X

• MPI+OpenMP is	sufficient	for	many	
apps,	but	implementation	is	poor
– Today	MPI+OpenMP ==	MPI+Pthreads

• Pthread	abstraction	is	too	generic,	
not	suitable	for	HPC
– Lack	of	fine-grained	scheduling,	memory	

management,	network	management,	
signaling,	etc.

• Better	runtime	can	significantly	improve	
MPI+OpenMP performance	and	support	
other	emerging	programming	models

core

MPI	process	with	many	
OpenMP threads
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Outline

• Motivation
• User-Level	Threads	(ULTs)
• Argobots
• BOLT:	OpenMP over	Lightweight	Threads
• Summary
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User-Level Threads (ULTs)

• What	is	user-level	thread	(ULT)?
– Provides	thread	semantics	in	user	space
– Execution	model:	cooperative	timesharing

• More	than	one	ULT	can	be	mapped	to	a	single	kernel	
thread

• ULTs	on	the	same	OS	thread	do	not	execute	in	parallel
– Can	be	implemented	with	coroutines

• Enable	explicit	suspend	and	resume	of	its	progress	by	
preserving	execution	state

• Some	languages	such	as	Python	and	Go	use	coroutines for	
asynchronous	I/O

tim
eline

Context 
switch

Context 
switch

ULT1

ULT2

Core Core Core Core Core Core Core Core

ULTs :

Kernel threads :
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User-Level Threads (ULTs)

• Why	ULTs?
– Conventional	threads	(e.g.,	Pthreads)	are	too	expensive	to	

express	massive	parallelism
– If	we	create	Pthreads	more	than	# of	cores	

(i.e.,	oversubscription):
• Context-switch	and	synchronization	overhead	will	increase	
dramatically

– ULTs	can	mitigate	high	overhead	of	Pthreads	but	need	explicit	
control

• Where	to	use?
– To	better	overlap	computation	and	communication/IO

• Low	context-switching	overhead	of	ULTs	can	give	more	opportunities	
to	hide	communication/IO	latency

– To	exploit	fine-grained	task	parallelism
• Lightweight	ULTs	are	more	suitable	to	express	massive	task	parallelism

U

U

U

OS
thread
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Pthreads vs. ULTs

• Average	time	for	creating	and	joining	one	thread
• Pthread:	6.6us	- 21.2us	(avg.	34,953	cycles)
• ULT	(Argobots):	78ns	- 130ns	(avg.	191	cycles)
• ULT	is	64x	- 233x	faster than	Pthread

– How	fast	is	ULT?
• L1$	access:	1.112ns,	L2$	access:	5.648ns,	memory	access:	18.4ns
• Context	switch	(2	processes):	1.64us
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Growing Interests in ULTs

• ULT	and	task	libraries
– Converse	threads,	Qthreads,	MassiveThreads,	Nanos++,	

Maestro,	GnuPth,	StackThreads/MP,	Protothreads,	Capriccio,	
StateThreads,	TiNy-threads,	etc.

• OS	supports
– Windows	fibers,	Solaris	threads

• Language	and	programming	models
– Cilk,	OpenMP task,	C++11	task,	C++17	coroutine proposal,		

Stackless Python,	Go	coroutines,	etc.

• Pros
– Easy	to	use	with	Pthreads-like	interface

• Cons
– Runtime	tries	to	do	something	smart	(e.g.,	work-stealing)
– This	may	conflict	with	the	characteristics	and	demands	of	

applications
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Argobots

Overview
• Separation	of	mechanisms	and	policies
• Massive	parallelism

– Exec.	Streams guarantee	progress
– Work	Units execute	to	completion

• User-level	threads	(ULTs)	vs.	Tasklets
• Clearly	defined	memory	semantics

– Consistency	domains
• Provide	Eventual	Consistency

– Software	can	manage	consistency

Argobots	Innovations
• Enabling	technology,	but	not	a	policy	maker

– High-level	languages/libraries	such	as	
OpenMP	or	Charm++	have	more	
information	about	the	user	application	
(data	locality,	dependencies)

• Explicit	model:	
– Enables	dynamism,	but	always	managed	

by	high-level	systems

Argobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)
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A	lightweight	low-level	threading	and	tasking	framework
(http://www.mcs.anl.gov/argobots/)
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*	Current	team	members:	Pavan	Balaji,	Sangmin	Seo,	Halim Amer (ANL),	L.	Kale,	Nitin	Bhat (UIUC)
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Argobots Execution Model

• Execution	Streams	(ES)
– Sequential	instruction	stream

• Can	consist	of	one	or	more	work	units
– Mapped	efficiently	to	a	hardware	

resource
– Implicitly	managed	progress	semantics

• One	blocked	ES	cannot	block	other	ESs

• User-level	Threads	(ULTs)
– Independent	execution	units	in	user	

space
– Associated	with	an	ES	when	running
– Yieldable	and	migratable
– Can	make	blocking	calls

• Tasklets
– Atomic	units	of	work
– Asynchronous	completion	via	

notifications
– Not	yieldable,	migratable	before	

execution
– Cannot	make	blocking	calls
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Argobots Execution Model

...

ESn

• Scheduler
– Stackable	scheduler	with	pluggable	

strategies
• Synchronization	primitives

– Mutex,	condition	variable,	barrier,	future
• Events

– Communication	triggers
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Explicit Mapping ULT/Tasklet to ES

• The	user	needs	to	map	work	units	to	ESs
• No	smart	scheduling,	no	work-stealing	unless	the	user	wants	

to	use

ES1

U0

U1

T1

T2

U2

U3

ES2

U4

U5

• Benefits
– Allow	locality	optimization

• Execute	work	units	on	the	same	ES

– No	expensive	lock	is	needed	
between	ULTs	on	the	same	ES

• They	do	not	run	in	parallel
• A	flag	is	enough
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Stackable Scheduler with Pluggable Strategies

• Associated	with	an	ES
• Can	handle	ULTs	and	tasklets
• Can	handle	schedulers

– Allows	to	stack	schedulers	hierarchically
• Can	handle	asynchronous	events
• Users	can	write	schedulers

– Provides	mechanisms,	not	policies
– Replace	the	default	scheduler

• E.g.,	FIFO,	LIFO,	Priority	Queue,	etc.
• ULT	can	explicitly	yield	to another	ULT

– Avoid	scheduler	overhead

Sched
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yield() yield_to(target)
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Performance: Create/Join Time

• Ideal	scalability
– If	the	ULT	runtime	is	perfectly	scalable,	the	time	should	be	the	same	

regardless	of	the	number	of	ESs
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Argobots’ Position

Node	OS

Argobots Comm.	Lib.

High-Level Programming Models/Libraries
Domain Specific	Languages	(DSLs)

Applications

...

Node	OS

Argobots Comm.	Lib.

Argobots	is	a	low-level	threading/tasking	runtime!
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Argobots Ecosystem
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OpenMP

• Directive	based	programming	model
• Commonly	used	for	shared-memory	programming	in	a	node
• Many	different	implementations

– Typically	on	top	of	Pthreads	library
– Intel,	GCC,	Clang,	IBM,	etc.

Sequential	code
for (i = 0; i < N; i++) {

do_something();
}

OpenMP	code
#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

zz

zzzz
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Nested Parallel Loop: Microbenchmark

17

A	thread	for	each	CPU	is	created
by	default

Each	thread	executes	a	portion

Each	thread	creates	more	threads
for	the	second	loop

Each	inner	thread	executes	a	portion

int in[1000][1000], out[1000][1000]; 

#pragma omp parallel for

for (i = 0; i < 1000; i++) {

lib_compute(i);

}

lib_compute(int x)

{

#pragma omp parallel for

for (j = 0; j < 1000; j++)

out[x][j] = compute(in[x][j]);

}

Contribution:	Adrian	Castello	(Universitat Jaume I)
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Nested Parallel Loop: Implementations

• GCC
– Does	not	reuse	the	idle	threads	in	nested	parallel	constructs
– All	thread	teams	inside	a	parallel	region	need	to	be	created

• ICC
– Reuse	idle	threads

• If	there	are	not	more	threads	available,	new	threads	are	created
• All	created	threads	are	OS	threads	and	add	overhead

• Implementation	using	Argobots
– Creates	ULTs	or	tasklets for	both	outer	loop	and	inner	loop
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Nested Parallel Loop: Performance

GCC	OpenMP	implementation	does	not	
reuse	idle	threads	in	nested	parallel	
regions,	all	the	teams	of	threads	need	to	
be	created	in	each	iteration

Execution	time	for	36	threads	in	the	outer	loop

Some	overhead	is	added	by	creating	
ULTs	instead	of	tasks

Lower	is	
better

Lower	is	
better
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Nested Parallel Loop: Analysis

• How	does	each	implementation	manage	the	threads	in	nested	
parallel	regions?

Imple. #	Created	Threads #	Reused	Threads # Created	
ULTs

# Created	
Tasks

GCC C	+	N*(T-1) =	35,036 0 --- ---

ICC C	+	C*(T-1)	=	1,296 (N-C)*(T-1) =	33,740 --- ---

Argobots tasks C	=	36 0 C	=	36 N*T	=	36,000

§ Parameters:
• C:	number	of	cores	(or	threads	created	by	user	at	the	beginning)
• N:	number	of	iterations	of	the	outer	loop
• M:	number	of	iterations	of	the	inner	loop
• T:	number	of	threads	for	the	inner	loop

Sequential	creation Parallel	creation

Example	->	C:	36,	N:	1,000,	M:	1,000,	T:36

204th	XMP	Workshop	(11/7/2016)



BOLT: A Lightning-Fast OpenMP Implementation

• About	BOLT
– BOLT	is	a	recursive	acronym	that	stands	for	

"BOLT	is	OpenMP over	Lightweight	Threads"
– https://www.mcs.anl.gov/bolt/

• Objective
– OpenMP framework	that	exploits	lightweight	threads	and	tasks

21

Improved	Nested	Massive	Parallelism

Enhanced	Fine-Grained	Task	Parallelism

Better	Interoperability	with	MPI	and	
Other	Internode	Programming	Models
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Approach & Development

• Basic	approach
– Compiler	simply	generates	runtime	API	calls,	while	the	runtime	

creates	ULTs/tasklets and	manages	them	over	a	fixed	set	of	
computational	resources

– Use	Argobots as	the	underlying	threading	and	tasking	mechanism
– ABI	compatibility	with	Intel	OpenMP compilers,	LLVM/Clang,	and	GCC	

(i.e.,	can	be	used	with	these	compilers)
• Development

– Runtime
• Based	on	Intel	OpenMP Runtime	API
• Generates	Argobots	work	units	from	OpenMP pragmas
• Can	generate	ULTs	or	tasklets depending	on	code	characteristics

– Compiler	(planned)
• LLVM/Clang
• Passes	characteristics	of	parallel	region	or	task	(e.g.,	existence	of	blocking	

calls)	to	the	runtime
• Extends	pragmas	with	the	option	“nonblocking”
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BOLT Execution Model

• OpenMP threads	and	tasks	are	translated	into	Argobots	work	units	
(i.e.,	ULTs	and	tasklets)

• Shared	pools	are	utilized	to	handle	nested	parallelism
• A	customized	Argobots	scheduler	manages	scheduling	of	work	units	

across	execution	streams
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Prototype Implementation of BOLT Runtime

• Based	on	Intel’s	open-source	OpenMP runtime
– http://openmp.llvm.org/

• Kept	the	original	runtime	API	for	the	ABI	compatibility
• Designed	and	implemented	the	threading	layer	using	

Argobots and	modified	the	runtime	internal	layer

24

Threading	Layer

Pthreads

Runtime	API	Layer

Runtime	Internal	Layer

Argobots
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OpenMP Pragma Translation

1. A	set	of	N threads	is	created	at	run	time
– If	they	have	not	been	created	yet
– Commonly	as	many	as	the	number	of	CPU	cores

2. The	number	of	iterations	is	divided	between	all	the	threads
3. A	synchronization	point	is	added	after	the	for	loop

– Implicit	barrier	at	the	end	of	parallel	for

#pragma omp parallel for (1,2)
for (i = 0; i < N; i++) {

do_something();
} (3)

254th	XMP	Workshop	(11/7/2016)



OpenMP Compiler & BOLT Runtime

__kmpc_fork_call(…){

}

__kmp_fork_call(…)

__kmp_join_call(…)

Intel	OpenMP	Runtime	API

• Create	Execution	Streams	(if	needed)
• Add	a	ULT	or	tasklet	to	each	ES
• Launch	the	work

• Join work	units	created

BOLT	runtime

#pragma	omp	parallel
Clang	and	Intel	compiler
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parallel for

#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

Creates	threads

Divides	all	iterations	among	threads

Synchronization	point

ES	0

ES	1

ES	K

…

WU

WU

WU

Each	work	unit	executes	
a	portion	of	the	for	loop

Implementation	using	Argobots

S

S

S

A	synchronization	point	is	added

One	Execution	Stream
for	each	CPU core
(or	hardware	thread)
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OpenUH OpenMP Validation Suite 3.1

GCC 6.1 ICC	17.0.0 +	
Intel	OpenMP

ICC 17.0.0	+	
BOLT	runtime	
(Argobots)

BOLT	(clang	+	
Argobots)

#	of	tested	OpenMP
constructs 62 62 62 62

#	of	used	tests 123 123 123 123

#	of	successful tests 118 118 122 112

#	of	failed	tests 5 5 1 1

Pass	rate	(%) 95.9 95.9 99.2 99.2
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• The	BOLT	prototype	functionally	works	well!
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Nested Parallel Loop Microbenchmark
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Application Study: KIFMM

• Kernel-Independent	Fast	Multipole	Method	(KIFMM)
– Offload	dgemv operations	to	Intel	MKL

• Evaluated	the	efficiency	of	the	nested	parallelism	support	in	Intel	OpenMP
and	BOLT	during	the	Downward	stage
– 9	threads	for	the	application	(outer	parallel	region)
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Application Study: ACME mini-app

• ACME	(Accelerated	Climate	Modeling	for	Energy)
– Implementing	additional	levels	of	parallelism	through	OpenMP

nested	parallel	loops	for	upcoming	many-core	machines
• Preliminary	results	of	testing	the	transport_semini-app	version	

of	HOMME	(ACME’s	CAM-SE	dycore)
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Summary

• Massive	on-node	parallelism	is	inevitable
– Need	runtime	systems	utilizing	such	parallelism

• User-level	threads	(ULTs)
– Lightweight	threads	more	suitable	for	fine-grained	dynamic	

parallelism	and	computation-communication	overlap
• Argobots

– A	lightweight	low-level	threading/tasking	framework
– Provides	efficient	mechanisms,	not	policies,	to	users	(library	

developers	or	compilers)
• They	can	build	their	own	solutions

• BOLT:	OpenMP over	Lightweight	Threads
– More	efficient	support	of	nested	parallelism	with	Argobots	ULTs	

and	tasklets
– Preliminary	results	show	that	BOLT	is	promising

4th	XMP	Workshop	(11/7/2016) 32



Argo Concurrency Team

• Argonne	National	Laboratory	(ANL)
– Pavan Balaji (co-lead)
– Sangmin	Seo
– Abdelhalim Amer
– Pete	Beckman	(PI)

• University	of	Illinois	at	Urbana-Champaign	(UIUC)
– Laxmikant Kale	(co-lead)
– Marc	Snir
– Nitin	Kundapur Bhat

• University	of	Tennessee,	Knoxville	(UTK)
– George	Bosilca
– Thomas	Herault
– Damien	Genet

• Pacific	Northwest	National	Laboratory	(PNNL)
– Sriram Krishnamoorthy

Past	Team	Members:
• Cyril	Bordage (UIUC)
• Prateek Jindal	(UIUC)
• Jonathan	Lifflander (UIUC)
• Esteban	Meneses

(University	of	Pittsburgh)
• Huiwei Lu	(ANL)
• Yanhua Sun	(UIUC)
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BOLT Collaborations

• Maintainers
– Argonne	National	Laboratory

• Sangmin Seo
• Abdelhalim Amer
• Pavan Balaji

• Contributors
– Universitat Jaume I	de	Castelló

• Adrián Castelló
• Rafael	Mayo
• Enrique	S.	Quintana-Ortí

– Barcelona	Supercomputing	Center	(BSC)
• Antonio	J.	Peña
• Jesus	Labarta

– RIKEN
• Jinpil Lee
• Mitsuhisa Sato
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Try Argobots & BOLT

• Argobots
– http://www.mcs.anl.gov/argobots/
– git repository

• https://github.com/pmodels/argobots
– Wiki

• https://github.com/pmodels/argobots/wiki
– Doxygen

• http://www.mcs.anl.gov/~sseo/public/argobots/

• BOLT
– http://www.mcs.anl.gov/bolt/
– git repository

• https://github.com/pmodels/bolt-runtime
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Q&A

• Thank	you	for	your	attention!

Questions?

4th	XMP	Workshop	(11/7/2016)


