
Correctness Check for XMP in YML
--- Programming in multi SPMD Programming Model

Miwako Tsuji

2019.11.05 7th XMP Workshop

XMP+YML and FP3C project

 FP3C: Framework and Programming for Post Petascale Computing

 a collaborative project between Japan and France

 September. 2010 – March. 2014

 Various research fields and their integration

 Programming model and programming language design

 Runtime libraries

 Accelerator

 Algorithm and mathematical libraries

 etc…

2013? @ Akihabara

MYX Project Consortium

 MUST Correctness Checking for YML and XMP Programs.

 International collaboration among Germany (DFG), Japan (JST), and France (ANR).

 Part of the Priority Programme "Software for Exascale Computing" (SPPEXA) in German.

3

• Partner from Germany (project coordinator)

-RWTH Aachen, IT Center and Institute for High

Performance Computing

-Prof. Matthias S. Mueller, Joachim Protze, Christian

Terboven

• Partner from Japan

-University of Tsukuba, Center for Computational Sciences,

and Center for Computational Science, RIKEN

-Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsuji

• Partner from France

-Maison de la Simulation

-Prof. Serge Petiton. Prof. Nahid Emad, Thomas Dufaud

Overview of MYX

 Runtime Correctness check for multi SPMD (mSPMD) programming model

 MUST (Germany)

 YML (France)

 XMP (Japan)

Correctness checking for
XMP in XMP+YML

XMP provides a tool interface
XMPT for analyses

Must checks Correctness
for XMP using XMPT

XMP+YML=
Hieratical and Scalable
Programming Model

YML:
workflow environment

YML orchestrates
multiple applications

XMP parallelizes YML tasks

MUST:
correctness checking
tool for MPI

XMP:
PGAS based parallel
programming language

Trilateral collaboration for scalable and productive computation

MUST: Runtime Correctness Check for MPI

 Must is a runtime correctness check library developed by the RWTH Aachen

 Detects errors in MPI (and OpenMP) and reports users

 Scalable

OMPT PnMPI

GTI (Generic Tool Infrastructure)

MUST: MPIstandards, rule for analyses

Softwarestack：MUST uses PnMPI library

to intercept MPI function calls, and analyze them

Application processes
MUST

Process

application

MPI library

PnMPI

Event

Local Analysis

GTI

GTI

Non-local

Analysis

Overview of MUST

Multi SPMD (mSPMD) Programming Model

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

 Multi-programming methodologies across multi-architectural levels

 Software had been developed to execute applications based on this programming model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

StarPU

MPI

XMP
YML

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

multi-programming methodologies

across multi-architectural levels

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

StarPU

MPI

XMP
YML

UNIVERSITE DE VERSAILLES

SAINT QUENTIN EN YVELINES

 Hierarchical systems

 A node may consist of many general cores and accelerator cores

 NUMA topology in a node

 A group of nodes tightly connected, Network locality

 A system consists of groups of nodes / a cluster of clusters

multi-programming methodologies

across multi-architectural levels

XcalableMP (XMP)

 Directive based parallel programming
language

 Data distribution and work mapping can be
declared by XMP directives

 XMP Compiler

 Source-to-source compiler

 C+XMP ⇒ C+XMP-runtime library call

 The XMP runtime library uses MPI in its
communication layer

int B[12];

#pragma xmp nodes p(4)

#pragma xmp template t(0:11)

#pragma xmp distribute t(block) ont p

#pragma xmp align B[i] with t(i)

#pragma xmp loop (i) on t(i)

for(i=0; i<12; i++){

B[i] = B[i]*2;

}

0 1 2 3 4 5 6 7 8 9 1110

Node1

Node2

Node3

Node4

a one-dimensional block-distributed array B[]

distributed over four nodes

Data Mapping

Work MappingData can be distributed over different

processes of a task automatically

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• introduce “parallelism” into tasks by XMP

• “heavy” task can be executed in parallel

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• divide a large parallel program into some

sub-programs to avoid the cost of

communication in large systems

- coarse grained tasks in a workflow

- moderate size SPMD programs

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node

• Compose complex application by

combining parallel appreciations and

libraries

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node
Fault detection

and recovery

Multi SPMD (mSPMD) Programming Model

CPU
cpucpu

CPU
cpucpu

M
em

o
ry

M
em

o
ry

M
em

o
ry

M
em

o
ry

NUMA Node

Heterogeneous

Node

hierarchical systems

Shared

Memory

Distributed

Parallel
Workflow

<task 1>

<task 2>

<task 3> <task 4>

<task 5> <task 6> <task 7>

<task 8><task 9>

<task 10>

OpenMP

OpenACC

StarPU, …
Node Node Node

Node Node Node Deadlock inside

each task?

The fault detection can not

detect deadlocks in MPI

programs

Multi SPMD (mSPMD) Programming Model

 Scalability

 by combining different parallel programming paradigm across different architectural level

 Reliability

 fault tolerant futures have been supported

 Productivity

 correctness checking by MUST library

Node0 Node1 Node2 Node3 Node4

mpirun

remote program1 remote program2

remote

program3

<task1>

<task4>

<task2>

#pragma xmp loop on t(i)

#pragma xmp task on p(3)

<task3>

MPI_Send(…

MPI_Allreduce(…

MPI_Barrier(…);

(wait) (wait)
remote

program4

<task5>

MPI_Comm_spawn MPI_Comm_spawn

ym
l_

sch
e
d
u
ler

&

O
m

n
iR

P
C

-M
P
I lib

rary

MPI_Comm_spawn

invocation communication

MPI_Send(“task2”, ...

MPI_Send(“task3”, ...

MUST+YML+XMP (MYX)
Overview of execution of mSPMD programming model

Node0 Node1 Node2 Node3 Node4

mpirun

remote program1 remote program2

remote

program3

<task1>

<task4>

<task2>

#pragma xmp loop on t(i)

#pragma xmp task on p(3)

<task3>

MPI_Send(…

MPI_Allreduce(…

MPI_Barrier(…);

(wait) (wait)
remote

program4

<task5>

MPI_Comm_spawn MPI_Comm_spawn

ym
l_

sch
e
d
u
ler

&

O
m

n
iR

P
C

-M
P
I lib

rary

MPI_Comm_spawn

invocation communication

MPI_Send(“task2”, ...

MPI_Send(“task3”, ...

Apply the correctness check by MUST for each task

• Check user defined SPMD tasks (XMP, MPI) by MUST

• Ignore the communication for workflow controls in the

middleware

MUST+YML+XMP (MYX)
Target of correctness check in execution of mSPMD programming model

XMPT Tool Interface

 ... is a generic tool API of XMP.

 Its basic idea is inspired by OMPT.

 event- and callback-based

 (Planned) targets:

 MYX (SPPEXA project by RWTH Aachen, UVSQ, and R-CCS)

 Extrae @ BSC

 Score-P / Scalasca @ JSC

 etc.

Oct. 21, 2019 SPPEXA Final Symposium 21

Basic Design of XMPT

Mar. 18, 2019 22

void xmp_init(){
xmpt_initialize(...);
...
}

void xmp_bcast(...){
(*xmpt_bcast_begin)(...);
xmp_bcast_body(...);
(*xmpt_bcast_end)(...);
}

void xmpt_initialize(...){
xmpt_set_callback(XMPT_BCAST_BEGIN, myx_bcast_begin);
xmpt_set_callback(XMPT_BCAST_END, myx_bcast_end);
...
}

void xmpt_set_callback(...);

void xmpt_initialize(...) __attribute__((weak));

◼At initialization

xmp_init invokes
xmpt_initialize.

Callbacks are registered
through xmpt_set_callback.

◼At each event
void
myx_bcast_begin(...);

void
myx_bcast_end(...);

The registered callbacks are invoked.

Provided by toolsProvided by an XMP compiler.

CRIStAL laboratory, Lille

MUST+YML+XMP (MYX): Implementation

 MUST+MPI / MUST+XMP : to check a single SPMD program

 mustrun –np n application.exe

 prepare a dedicated dynamic library for the application.exe, set the environmental variables

 mpirun –np (n+1) application.exe: 1 process should be kept for the MUST analysis

 MUST+YML+MPI/XMP: to check multiple SPMD program

 Instead of mustrun (mpirun), MPI_Comm_spawn is used to invoke remote SPMD programs in
mSPMD

 extend the middleware of workflow scheduler and the remote program generator in mSPMD

 MPI_* functions in the workflow control are replaced with PMPI_* functions

 MPI_Comm_spwan(“prog”, n, …) ➝ PMPI_Comm_spwan(“prog”, n+1, …)

 preparation steps performed within the mustrun script before mpirun should be performed
before starting a workflow

 set the environmental variables required by MUST manually (Originally, they are set by the
mustrun scprit)

 prepare a dedicated dynamic library to analyze each remote program

Experiments on Oakforest-PACS

 Compare the behavior of workflow applications w/ and w/o error

 Evaluate the overhead to apply MUST for tasks in a mSPMD application

 Oakforest-PACS (OFP): supercomputer installed in Kashiwa, operated by U. Tokyo and U.
Tsukuba

 8208 KNL nodes, Connected via Intel Omni Path

 Compiler intel/2018.1.163

 MPI impi/2018.1.163

 30 processes (flat-MPI) for each task, 1, 2, 4, 8, 16, 32 tasks in each application, all tasks are
run simultaneously

Test codes

Allreduce

for(i=0; i<100; i++){
MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
usleep(100000);

}

Allreduce: Type conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_INTEGER, MPI_SUM,
MPI_COMM_WORLD);

else
MPI_Allreduce(buf, rbuf, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

usleep(100000);
}

Test codes (cont.
Allreduce: Operation conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_MAX, MPI_COMM_WORLD);
else

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_MIN, MPI_COMM_WORLD);
usleep(100000);

}

Allreduce: Size conflict

for(i=0; i<100; i++){
if(myrank==0)

MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
else

MPI_Allreduce(buf, rbuf, 2, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
usleep(100000);

}

Test codes (cont.

Pingpong

for(i=0; i<100; i++){
if(myrank%2==0) MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
else MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD, ..);
usleep(100000);
if(myrank%2==0) MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD,..);
else MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
usleep(100000);}

Pingpong, Type conflict

for(i=0; i<100; i++){
if(myrank%2==0) MPI_Send(buf, 1, MPI_UNSINGED_LONG, dest, tag, MPI_COMM_WORLD);
else MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD, ..);
usleep(100000);
if(myrank%2==0) MPI_Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM_WORLD,..);
else MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);
usleep(100000);}

Result (1) Status
w/ MUST w/o MUST

completed? reported? completed? reported?

allreduce w/o

error

completed - completed -

allreduce type

conflict

completed error report completed no

allreduce

operation conflict

completed error report completed no

allreduce size

conflict

failed error report failed simple error

report

pingpong w/o

error

completed - completed -

pingpong type

conflict

completed error report completed no

Result (2) Example of error report from MUST

Result (3) Overhead: MPI_Allreduce

 The overheads depend on the frequency of the communication

 The overhead is ignorable if we don’t perform communication very intensively

 Some overheads even if there is no error if we call MPI_allreduce 100 times per second

0

20

40

60

80

100

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

(sec)
(sec)

tasks tasks

(Allreduce + 1-sec sleep)x100 (Allreduce + 0.01-sec sleep)x10000

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

Result (3) Overhead: pingpong

 No overhead if there is no error

 The overhead to record errors in the point-to-point communications is large (even when 1
point-to-point communication per second) due to the complexity of MPI function call
dependencies

(sec)
(sec)

tasks tasks

(Send + 1-sec sleep

Recv + 1-sec sleep)x50
(Send + 0.01-sec sleep

Recv + 0.01-sec sleep)x5000

Experiments for XMP-tasks: Test codes

Uncorrect: reduction out of nodes

#pragma xmp task on nodes(1)
{
#pragma xmp reduction (+:sum) on nodes(3)
}

p(1) p(2) p(3) p(4)

task on nodes(1)

reduction on nodes(3) ?

Experiments for XMP-tasks: Results

Conclusion

 MYX: an international collaborative project for higher productivity in exascale computing. Runtime
correctness check by MUST for multi SPMD Programming Model by YML+XMP

 MUST is a correctness checking tool.

 YML is a workflow language (to be presented by Miwako)

 XMP is a directive-based PGAS extension for Fortran & C supporting the global- and local-view
programming.

 XMP+MUST

 XMP provides an interfere, XMPT, for performance tools

 MUST uses the XMPT and check the correctness of XMP

 XMP+YML

 Tasks written in XMP of a workflow managed by YML

 MUST+YML+XMP

 The task generator and middleware in mSPMD have been extended

⇒ Scalable, reliable programming model with high productively

Scalable : Combination of multiple-SPMDs by YML and XMP

Reliable : Fault-detection and recovery are supported

High Productively : XMP, YML are easier than C+MPI

MUST and XMPT provide a debug tool for SPMD

