Correctness Check for XMP in YML

--- Programming in multi SPMD Programming Model
Miwako Tsuji

N/
S & R Jm S o ([Sriversite [E_—
wen RCCS - de Lille UNIVERSITY

2019.11.05 7t XMP Workshop

XMP+YML and FP3C project

- FP3C: Framework and Programming for Post Petascale Computing
- a collaborative project between Japan and France
- September. 2010 — March. 2014

- Various research fields and their integration
- Programming model and programming language design
Runtime libraries

2013? @ Akihabara

« Accelerator
- Algorithm and mathematical libraries
- etc...
University of Tiukuba e | RRIEKRF
% Ry \ s & ‘fw‘ Tokyo Institute of Technology
i;, 'i;-‘l"\,‘,,\n; ==F F P3C G rou p S Ce:)
= | =

om
AICS EJ

I MY X Project Consortium

- MUST Correctness Checking for YML and XMP Programs.
- International collaboration among Germany (DFG), Japan (JST), and France (ANR).
- Part of the Priority Programme "Software for Exascale Computing" (SPPEXA) in German.

 Partner from Germany (project coordinator)
-RWTH Aachen, IT Center and Institute for High
Performance Computing
-Prof. Matthias S. Mueller, Joachim Protze, Christian
Terboven
 Partner from Japan
M -University of Tsukuba, Center for Computational Sciences,
"f‘ and Center for Computational Science, RIKEN
-Prof. Taisuke Boku, Hitoshi Murai, Miwako Tsulji
5

« Partner from France
-Maison de la Simulation
-Prof. Serge Petiton. Prof. Nahid Emad, Thomas Dufaud

o)

|. ;-‘; ‘ ‘;‘__‘“,“
i : 1‘\

J Overview of MYX

» Runtime Correctness check for multi SPMD (mSPMD) programming model

- MUST (Germany)
» YML (France) Trilateral collaboration for scalable and productive computation

- XMP (Japan)

Correctness checking for MUST:
XMP in XMP+YML correctness checking
tool for MPI

YML:

XMP provides a tool interface
XMPT for analyses
1

workflow environment

YML orchestrates Must checks Correctness
multiple applications for XMP using XMPT
AN N\

XMP parallelizes YML tasks

XMP+YML= XMP:
Hieratical and Scalable PGAS based parallel

Programming Model programming language

I MUST: Runtime Correctness Check for MPI

- Must is a runtime correctness check library developed by the RWTH Aachen
- Detects errors in MPI (and OpenMP) and reports users

« Scalable icati e
Application processes ...

application

Softwarestack : MUST uses P"MPI library
to intercept MPI function calls, and analyze them

MUST: MPIstandards, rule for analyses

GTI (Generic Tool Infrastructure)
OMPT P"MPI

Non-local
Analysis

MPI library

I Overview of MUST

No MPI Init before first MPI-call

int main(int argc, char** argv) Fortran type in C

{ -

Recv-recv deadlock

int rank, size, ;
Rank@: src=size (out of range)

MPI Comm_rank (MPI_COMM WORLD, &

Type not commited before use

Type not freed bofore end of main

MPI Datatype type; Send 4 int, recv 2 int:truncation

MPI_Type_con _ ' _{ No MPI_Finalize

MPI_Recv(buf,

ize-rank,"", MPI_COMM_WORLD, MPI_STATUS_ IGNORE);
MPI_Send(buf, , '

=Tank, , MPI_COMM_WORLD) ;
printf("H m rank %d of %d\n",rank, size);

return = ;

l Multi SPMD (mSPMD) Programming Model
AEEE| Heterogeneous
| J_\ Node

NUMA Node
hierarchical systems

L .)
Kiowap

- Hierarchical systems
- A node may consist of many general cores and accelerator cores

- NUMA topology in a node
- A group of nodes tightly connected, Network locality

- A system consists of groups of nodes / a cluster of clusters

Multi-programming methodologies across multi-architectural levels
- Software had been developed to execute applications based on this programming model

I Multi SPMD (mSPMD) Programming Model

multisprogramming methodologi m TET———
acros itectural levels g
; Node
: — T }
D pULeq E areg Cppg
0 0 -
. O O - v .
o NUMA Node

onMF
A
Ope

* Hierarchical systems

A node may consist of many general cores and accelerator cores
- NUMA topology in a node

- A group of nodes tightly connected, Network locality

- A system consists of groups of nodes / a cluster of clusters

I Multi SPMD (mSPMD) Programming Model

multisprogramming methodologi m TET———
acros itectural levels g
; Node
: — T }
D pULeq E areg Cppg
0 0 -
. O O - v .

onMF
NN A
OF

* Hierarchical systems

A node may consist of many general cores and accelerator cores
- NUMA topology in a node

- A group of nodes tightly connected, Network locality

- A system consists of groups of nodes / a cluster of clusters

int B[12];

d XcalableMP (XMP)
#pragma xmp nodes p(4)

- Directive based parallel programming #pragma xmp template £(0:11) Data Mapping

language #pragma xmp distribute t(block) ont p

- Data distribution and work mapping can be #pragma xmp align B[i] with t(i)

declared by XMP directives
a one-dimensional block-distributed array B[]

- XMP Compiler one
. Source-to-source compiler distributed over four nodes
0123 45¢6 7 89 10 11

+ C+XMP = C+XMP-runtime library call
+ The XMP runtime library uses MPI in its Node1 -

communication layer Node2 -
Node3 HER
Node4 HEN

Data can be distributed over different #pragma xmp loop (i) on i)~ Work Mapping
for(i=0; i<12: i++){
B[i] = B[i]*2:
}

processes of a task automatically

Multi SPMD (mSPMD) Programming Model

Heterogeneous
Node

\ Distributed : Shared [
Workflow :
Parallel Memory

NUMA Node

Node Node Node OpenMP
OpenACC

Node \ Node Node StarPU, ...

* introduce “parallelism” into tasks by XMP
“heavy” task can be executed in parallel

l Multi SPMD (mSPMD) Programming Model

Heterogeneous
n Node
‘ : Ll
| : Distributed HHIE Shared [
Workflow m
Parallel Memory

NUMA Node

|
OpenACC
StarPU, ...

 divide a |ar g e At
1o g0 - Coarse grained tasks in a workflow

w0110l - moderate size SPMD programs

Multi SPMD (mSPMD) Programming Model

Heterogeneous
Node

Distributed
Parallel

Workflow

|
Node Node Node
OpenACC
Node Node Node StarPU, ...

« Compose complex application by
combining parallel appreciations and
libraries

l Multi SPMD (mSPMD) Programming Model

N r
E
L J L
.

Workflow \ Distributea E]

Heterogeneous
Node

Parallel

NUMA Node

Fault detection
and recovery

l Multi SPMD (mSPMD) Programming Model

N r
E
L J L
.

Heterogeneous
Node

Parallel

Workflow \ Distributed E]

NUMA Node

Deadlock inside
each task?

ault detection can not
detect deadlocks in MPI
programs

l Multi SPMD (mSPMD) Programming Model

- Scalability
- by combining different parallel programming paradigm across different architectural level

- Reliability
- fault tolerant futures have been supported
* Productivity

MUST+YML+XMP (MY X) nvocation _ communication

Overview of execution of mMSPMD programming model
NodeO Node1 Node?2 Node3 Node4

mpirun MPI_Comm_spawn MPI_Comm_spawn

remote program1

remote program?2
<task2>
#pragma xmp loop on (i)
#pragma xmp task on p(3)

A

<task1>

9 J9|NPayos W

MPI -~ i
COmm;,.P-aW” M_EI__S_er_lgﬁ n/IPI _Barrier(...);
‘ remote remote

AJeaqi| |dN-0dYyIuwQ

<task3>
MPI_Send(...
MPI_Allreduce(...

program3

program4

MUST+YML+XMP (MY X) nvocation _ communication

Target of correctness check in execution of mSPMD programming model

Node0 Node1 N e Check user defined SPMD tasks (XMP, MPI) by MUST
 Ignore the communication for workflow controls in the
mpirun MPI_Comm_spawn middleware

remote program remote program2

<task2>
#pragma xmp loop on {(i)
#pragma xmp task on p(3)

NN, T S X :

S remote remote
program3 program4 <task3>

MPI_Send(...
<task4> MPI_Allreduce(...

Apply the correctness check by MUST for each task

A

<task1>

3
wn
(@)
=
(qp)]
o
c
(¢}
-
o

-

AJeaqi| |dN-0dYyIuwQ

| XMPT Tool Interface

- ... Is a generic tool APl of XMP.

- Its basic idea is inspired by OMPT.
 event- and callback-based

- (Planned) targets:
« MYX (SPPEXA project by RWTH Aachen, UVSQ, and R-CCS)
« Extrae @ BSC
« Score-P [Scalasca @ JSC
- etc.

Oct. 21, 2019 SPPEXA Final Symposium

21

Basic Design of XMPT

Callbacks are registered

n A.I. InI.I.IO“ZO.I.Ion through xmpt_set callback.

void xmpt_set_callback(...);

Provided by an XMP compiler. Provided by tools

"/
void xmp_init(){ |~ | void xmpt_initialize(...){/
xmpt_initialize(...);¥] xmpt set callback(XMPT_BCAST/BEGIN, myx_ bcast begin);
\ xmpt set callback(XMPT_BCAST END, myx bcast_end);

} \

\ }...

|

xmp_init invokes
xmpt _initialize.

void xmpt_initialize(...) __attribute__ ((weak));

[] AT eCICh everﬂ' The registered callbacks are invoked.

void xmp bcast(...){ void
(*xmpt_bcast_begin)(...);f”’* myx_bcast_begin(...);
xmp_bcast _body(...);
(*xmpt_bcast_end)(...); ——__| void

} myx_bcast _end(...);

Mar. 18, 2019 CRIStAL laboratory, Lille 22

MUST+YML+XMP (MY X): Implementation

- MUST+MPI / MUST+XMP : to check a single SPMD program

- mustrun -np n application.exe

- prepare a dedicated dynamic library for the application.exe, set the environmental variables
- mpirun -np (n+1) application.exe: 1 process should be kept for the MUST analysis

« MUST+YML+MPI/XMP: to check multiple SPMD program

- Instead of mustrun (mpirun), MPI_Comm_spawn is used to invoke remote SPMD programs in
mSPMD

- extend the middleware of workflow scheduler and the remote program generator in mSPMD
- MPL_* functions in the workflow control are replaced with PMPI_* functions
« MPI_Comm_spwan(“prog”, n, ...) = PMPI_Comm_spwan(“prog”, n+1, ...)

- preparation steps performed within the mustrun script before mpirun should be performed
before starting a workflow

- set the environmental variables required by MUST manually (Originally, they are set by the
mustrun scprit)

- prepare a dedicated dynamic library to analyze each remote program

I Experiments on Oakforest-PACS

- Compare the behavior of workflow applications w/ and w/o error
- Evaluate the overhead to apply MUST for tasks in a mSPMD application

- Oakforest-PACS (OFP): supercomputer installed in Kashiwa, operated by U. Tokyo and U.
Tsukuba
- 8208 KNL nodes, Connected via Intel Omni Path
 Compiler intel/2018.1.163
* MPIl impi/2018.1.163

- 30 processes (flat-MPI) for each task, 1, 2, 4, 8, 16, 32 tasks in each application, all tasks are
run simultaneously

Test codes

Allreduce
for(i=0; i<100; i++){

MPI _Allreduce(buf, rbuf, 1, MPI LONG, MPI SUM, MPI_COMM WORLD);
usleep(100000);

Allreduce: Type conflict
for(i=0; i<100; i++){
if(myrank==0)

MPI _Allreduce(buf, rbuf, 1, MPI INTEGER, MPI_ SUM,
MPI_COMM_WORLD);

else

MPI Allreduce(buf, rbuf, 1, MPI_INT, MPI_SUM, MPI_COMM WORLD);
usleep(100000) ;

|

¥

Test codes (cont.

for(i=0; 1i<100; i++){
if(myrank==0)
MPI _Allreduce(buf, rbuf, 1, MPI LONG, MPI MAX, MPI_COMM WORLD);
else

MPI_Allreduce(buf, rbuf, 1, MPI LONG, MPI MIN, MPI_COMM WORLD);
usleep(100000);

}
Allreduce: Size conflict

for(i=0; i<100; i++){
if(myrank==0)
MPI_Allreduce(buf, rbuf, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
else
MPI_Allreduce(buf, rbuf, 2, MPI_LONG, MPI_SUM, MPI_COMM_WORLD);
usleep(100000);

}

I Test codes (cont.

for(i=0; 1<100; i++){
if(myrank%2==0) MPI_ Send(buf, 1, MPI LONG, dest, tag, MPI COMM_WORLD);

else MPI Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM WORLD, ..);
usleep(100000) ;

if(myrank%2==0) MPI Recv(buf, 1, MPI LONG, src , tag, MPI COMM_WORLD,..);
else MPI Send(buf, 1, MPI LONG, dest, tag, MPI_COMM WORLD);
usleep(100000); }

Pingpong, Type conflict

for(i=0; i<100; i++){
if(myrank%2==0) MPI_Send(buf, 1, MPI_UNSINGED LONG, dest, tag, MPI COMM_WORLD);

else MPI Recv(buf, 1, MPI_LONG, src , tag, MPI_COMM WORLD, ..);
usleep(100000) ;

if(myrank%2==0) MPI Recv(buf, 1, MPI LONG, src , tag, MPI COMM_WORLD,..);
else MPI_Send(buf, 1, MPI_LONG, dest, tag, MPI_COMM_WORLD);

usleep(100000);}

I Result (1) Status
_

T T reRorelTcomplted:

allreduce w/o completed completed

error

allreduce type completed error report completed no
conflict

allreduce completed error report completed no
operation conflict

allreduce size failed error report failed simple error
conflict report
pingpong w/o completed - completed -
error

pingpong type completed error report completed no

conflict

MUST Output, starting date: Tue Jan 22 19:28:40 20819.

I Result (2) Example of error report from MUST

Rank(s) Message
1 Error send and a receive operation use datatypes that do not match! Mismatch occur:
Details:

[Fron— JReferences

A send and a receive operation use datatypes that do not match!
Mismatch occurs at (MPI_INTEGER) in the send type and at (MPI_INT)
in the receive type (consult the MUST manual for a detailed
description of datatype positions). A graphical representation of
this situation is available in the file named "MUST Qutput-
files/MUST_Typemismatch_1.dot". Use the dot tool of the graphviz
package to visualize it, e.g. issue "dot -Tps MUST Output-
files/MUST_Typemismatch_1.dot -o mismatch.ps". The graph shows the
nodes of the involved Datatypes that form the root cause of the type
mismatch. The send operation was started at reference 1, the receive
operation was started at reference 2. (Information on communicator:

Representative
location:
call MPI_Recw
(1st
pccurrence)

References of a
representative
process:

reference 1
rank @: call
MPI Send (1st
pccurrence)

reference 2

MPI_COMM_WORLD) (Information on send of count 1 with ;s;kﬁléuc?}llt
type:MPI_INTEGER) (Information on receive of count 1 with occ;rrence)
type:MPI_INT)
3 Error |A send and a receive operation use datatypes that do not match! Mismatch occur--
0 Error |A send and a receive operation use datatypes that do not match! Mismatch occur:-
0-3 Warning |You requested 12 threads by OMP_NUM_THREADS but used MPI_Init to start your ap:-
8-3 Error [|Argument 1 (comm) is an unknown communicator where a valid communicator was ex-
3 Error |There are 16 communicators that are not freed when MPI Finalize was issued, a -
1 Error [There are 16 communicators that are not freed when MPI_Finalize was issued, a '
2 Error |[There are 16 communicators that are not freed when MPI_Finalize was issued, a '
B-3 Error |[There are 2 operations that are not freed when MPI_Finalize was issued, a qual--
] Error |There are 16 communicators that are not freed when MPI Finalize was issued, a -

MUST has completed successfully, end date: Tue Jan 22 19:28:41 2019.

l Result (3) Overhead: MPI_Allreduce

(sec) (Alireduce + 1-sec sleep)x100 ZOOSGC) (Allreduce + 0.01-sec sleep)x10000
100
80
60
40
20
0

B NoError-NoMUST ® NoError-MUST tasks ® NoError-NoMUST ® NoError-MUST tasks

W Error-NoMUST ® Error-MUST W Error-NOMUST ~ ® Error-MUST

- The overheads depend on the frequency of the communication
 The overhead is ignorable if we don’t perform communication very intensively

- Some overheads even if there is no error if we call MPI_allreduce 100 times per second

I Result (3) Overhead: pingpong

(sec) (Send + 1-sec sleep (sec) (Send + 0.01-sec sleep
200 Recv + 1-sec sleep x50 200 Recv + 0.01-sec sleep)x5000
150

o O

m NoError-NoMUST ® NoError-MUST tasks m NoError-NoMUST m NoError-MUST
®m Error-NoMUST ® Error-MUST m Error-NoMUST ® Error-MUST

- No overhead if there is no error

- The overhead to record errors in the point-to-point communications is large (even when 1
point-to-point communication per second) due to the complexity of MPI function call
dependencies

150
100 100
IO A OO A o
0
1 2 4 8 6

tasks

I Experiments for XMP-tasks: Test codes

Uncorrect: reduction out of nodes

#pragma xmp task on nodes(1)

{

#pragma xmp reduction (+:sum) on nodes(3)

¥

p(1) p(2) p(3) p(4)

task on nodes(1)

reduction on nodes(3) ---@---------------- _ ?

I Experiments for XMP-tasks: Results

[c5893.ofp:**pp_4.rex:16cdb] Ninf_stub_SET_ARG(1)=0x1765148, @x1765148
[c5893.0fp:**pp_4.rex:16c4b] Ninf_stub_SET_ARG(2)=0x17653c@, @x17653c@
[c5893.ofp:**pp_4.rex:16cd4b] Ninf_stub_BEGIN
[CurrentNodesTrack [CurrentNodesTrack 2] initialNodes (2)
[CurrentNodesTrack 2] is subset: isInCurrentNodeSet ()
[CurrentNodesTrack 3 | initialMNodes (2)
[CurrentNodesTrack 3] is subset: isInCurrentNodeSet ()

]

[CurrentNodesTrack 3 selectNodes (2, [1:1:1]): @xel53088 / 2

1] initialNodes (2)

[CurrentNodesTrack 1] is subset: isInCurrentNodeSet ()
[CurrentNodesTrack 1] selectNodes (2, [1:1:1]): [CurrentNodesTrack 2] s
[CurrentNodesTrack 2] popNodes ()

[CurrentNodesTrack 3] popNodes ()

@x2928388 / 2

[CurrentNodesTrack popNodes ()

[CurrentNodesTrack initialNodes (2)

[CurrentNodesTrack is subset: isInCurrentModeSet ()

[CurrentNodesTrack selectNodes (2, 15:5:1170: 0x] 2
[CurrentNodesTrack popNodes ()

[CurrentNodesTrack popNodes ()
[c5893.ofp:**pp_4.rex:16cd4b] Ninf_stub_END begin

1 1]

0]

B]
[CurrentNodesTrack @] selectNodes (2. [1:1:111: Ex1?§:z:: i 2
[CurrentNodesTrack @]]|is no subset: isInCurrentNodeSet ()

g] /

B]

0]

- an w

Conclusion

- MYX: an international collaborative project for higher productivity in exascale computing. Runtime
correctness check by MUST for multi SPMD Programming Model by YML+XMP

- MUST is a correctness checking tool.
- YML is a workflow language (to be presented by Miwako)
- XMP is a directive-based PGAS extension for Fortran & C supporting the global- and local-view
programming.
« XMP+MUST
- XMP provides an interfere, XMPT, for performance tools
« MUST uses the XMPT and check the correctness of XMP

- XMP+YML
- Tasks written in XMP of a workflow managed by YML

* MUST+YML+XMP
- The task generator and middleware in mSPMD have been extended
= Scalable, reliable programming model with high productively
Scalable : Combination of multiple-SPMDs by YML and XMP
Reliable : Fault-detection and recovery are supported
High Productively : XMP, YML are easier than C+MPI
MUST and XMPT provide a debug tool for SPMD

