
XcalableACC
⟨ex-scalable-a-c-c⟩

Language Specification

Version 1.0

RIKEN AICS and University of Tsukuba

June 2017



Copyright c⃝2017 Programming Environment Research Team of RIKEN AICS and High Per-
formance Computing System Laboratory of University of Tsukuba.

2



History

Version 1.0: June 26, 2017 First release.

3





Contents

1 Introduction 1
1.1 Hardware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 XcalableMP Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 OpenACC Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Directive Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Organization of This Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 XcalableMP Extensions 5
2.1 Combination of XcalableMP and OpenACC . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 OpenACC Directives on Data . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 OpenACC Loop Construct . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Communication on Accelerated Clusters . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 XcalableACC Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1.1 reflect Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1.2 reflect init and reflect do Constructs . . . . . . . . . . . . . . . . 9
2.2.1.3 gmove Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.4 barrier Construct . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1.5 reduction Construct . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1.6 bcast Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1.7 wait async Construct . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Coarray Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 OpenACC Extensions 17
3.1 Device Set Definition and Reference . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 devices Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1.1 Default Device Set . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1.2 Device Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 on device clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Data and Work Mapping Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 layout Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 shadow Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Synchronization on Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 barrier device Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 26

i



ii



Chapter 1

Introduction

This document defines the specification of XcalableACC which is an extension of XcalableMP
version 1.3[1] and OpenACC version 2.5[2]. XcalableACC provides a parallel programming
model for accelerated clusters which are distributed memory systems equipped with accelerators.
In this document, terminologies of XcalableMP and OpenACC are indicated by bold font. For
details, refer to each specification[1, 2].

1.1 Hardware Model

The target of XcalableACC is an accelerated cluster, a hardware model of which is shown in
Fig. 1.1.

Network

Node

Processor

Accelerator

Host

Memory

Figure 1.1: Hardware Model

An execution unit is called node as with XcalableMP. Each node consists of a single host
and multiple accelerators (such as GPUs and Intel MICs). Each host has a processor, which
may have several cores, and own local memory. Each accelerator also has them. Each node is
connected with each other via network. Each node can access its local memories directly and
remote memories, that is, the memories of another node indirectly. In a host, the accelerator
memory may be physically and/or virtually separate from the host memory as with the memory
model of OpenACC. Thus, a host may not be able to read or write the accelerator memory
directly.

1.2 Programming Model

XcalableACC is a directive-based language extension based on Fortran 90 and ISO C90 (ANSI
C90). To develop applications on accelerated clusters with ease, XcalableACC extends Xcal-
ableACC and OpenACC independently as follow: (1) XcalableMP extensions are to facilitate
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2 CHAPTER 1. INTRODUCTION

cooperation between XcalableMP and OpenACC directives. (2) OpenACC extensions are to
deal with multiple accelerators.

1.2.1 XcalableMP Extensions

In a program using the XcalableMP extensions, XcalableMP, OpenACC, and XcalableACC
directives are used. Fig. 1.2 shows a concept of the XcalableMP extensions.

Template

Node #0

Host

Accelerator

Node #1

OpenACC

XcalableACC

XcalableMP

Figure 1.2: Concept of XcalableMP Extensions

XcalableMP directives define a template and a node set. The template represents a global
index space, which is distributed onto the node set. Moreover, XcalableMP directives declare
distributed arrays, parallelize loop statements and transfer data among host memories ac-
cording to the distributed template. OpenACC directives transfer the distributed arrays
between host memory and accelerator memory on the same node and execute the loop state-
ments parallelized by XcalableMP on accelerators in parallel. XcalableACC directives, which
are XcalableMP communication directives with an acc clause, transfer data among accelerator
memories and between accelerator memory and host memory on different nodes. Moreover,
coarray features also transfer data on different nodes.

Note that the XcalableMP extensions are not a simple combination of XcalableMP and Ope-
nACC. For example, if you represent communication of distributed array among accelerators
shown in Fig. 1.2 by the combination of XcalableMP and OpenACC, you need to specify ex-
plicitly communication between host and accelerator by OpenACC and that between hosts by
XcalableMP. Moreover, you need to calculate manually indices of the distributed array owned
by each node. By contrast, XcalableACC directives can represent such communication among
accelerators directly using global indices.

1.2.2 OpenACC Extensions

The OpenACC extension can represent offloading works and data to multiple-accelerators on a
node. Fig. 1.3 shows a concept of the OpenACC extension.

• A device set is a set of accelerator devices on a node. OpenACC directives can be
applied to a device set.

• A distributed-array is an array distributed on a device set. You can offload and
distribute arrays on host to device set. Moreover, the extension directives can offload
works and copy memory between host and device set for the distributed-arrays.

• The extension directives can synchronize devices in a device set.
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Figure 1.3: Concept of OpenACC Extension

• XcalableACC directives also transfer data between device memories on the node.

1.3 Execution Model

The execution model of XcalableACC is a combination of those of XcalableMP and OpenACC.
While the execution model of a host CPU programming is based on that of XcalableMP, that of
an accelerator programming is based on that of OpenACC. Unless otherwise specified, each node
behaves exactly as specified in the XcalableMP specification[1] or the OpenACC specification[2].

An XcalableACC program execution is based on the SPMD model, where each node starts exe-
cution from the same main routine and keeps executing the same code independently (i.e. asyn-
chronously), which is referred to as the replicated execution until it encounters an XcalableMP
construct or an XcalableMP-extension construct. In particular, the XcalableMP-extension con-
struct may allocate, deallocate, or transfer data on accelerators. An OpenACC construct or an
OpenACC-extension construct may define parallel regions, such as work-sharing loops, and
offloads it to accelerators under control of the host.

When a node encounters a loop construct targeted by a combination of XcalableMP loop and
OpenACC loop directives, it executes the loop construct in parallel with other accelerators,
so that each iteration of the loop construct is independently executed by the accelerator where
a specified data element resides.

When a node encounters a XcalableACC synchronization or a XcalableACC communication
directive, synchronization or communication occurs between it and other accelerators. That is,
such global constructs are performed collectively by the current executing nodes. Note
that neither synchronizations nor communications occur without these constructs specified.

1.4 Data Model

There are two classes of data in XcalableACC: global data and local data as with XcalableMP.
Data declared in an XcalableACC program are local by default. Both global data and local
data can exist on host memory and accelerator memory. About the data models of host memory
and accelerator memory, refer to the OpenACC specification[2].

Global data are ones that are distributed onto the executing node set by the align directive.
Each fragment of a global data is allocated in host memory of a node in the executing node
set. OpenACC directives can transfer the fragment from host memory to accelerator memory.

Local data are all of the ones that are not global. They are replicated in the local memory of
each of the executing nodes.
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A node can access directly only local data and sections of global data that are allocated in
its local memory. To access data in remote memory, explicit communication must be specified
in such ways as the global communication constructs and the coarray assignments.
Particularly in XcalableACC Fortran, for common blocks that include any global variables, the
ways how the storage sequence of them is defined and how the storage association of them is
resolved are implementation-dependent.

1.5 Directive Format

This section describes the syntax and behavior of XcalableMP and OpenACC directives in
XcalableACC. In this document, the following notation is used to describe the directives.

xxx type-face characters are used to indicate literal type characters.
xxx... If the line is followed by “...”, then xxx can be repeated.
[xxx] xxx is optional.

The syntax rule continues.
[F] The following lines are effective only in XcalableACC Fortran.
[C] The following lines are effective only in XcalableACC C.

In XcalableACC Fortran, XcalableMP and OpenACC directives are specified using special com-
ments that are identified by unique sentinels !$xmp and !$acc respectively. the directives follow
the rules for comment lines of either the Fortran free or fixed source form, depending on the
source form of the surrounding program unit1. The directives are case-insensitive.

[F] !$xmp directive-name clause
[F] !$acc directive-name clause

In XcalableACC, XcalableMP and OpenACC directives are specified using the #pragma mech-
anism provided by the C standards. the directives are case-sensitive.

[C] #pragma xmp directive-name clause
[C] #pragma acc directive-name clause

1.6 Organization of This Document

The remainder of this document is structured as follows:

• Chapter 2: XcalableMP Extensions

• Chapter 3: OpenACC Extensions

1Consequently, the rules of comment lines that an XcalableMP directive follows is the same as the ones that
an OpenMP directive follows.



Chapter 2

XcalableMP Extensions

This chapter defines a behavior of mixing XcalableMP and OpenACC. Note that the existing
OpenACC is not extended in the XcalableMP extensions. The XcalableMP extensions can rep-
resent (1) parallelization with keeping sequential code image using a combination of XcalableMP
and OpenACC, and (2) communication among accelerator memories and between accelerator
memory and host memory on different nodes using XcalableACC directives or coarray features.

2.1 Combination of XcalableMP and OpenACC

2.1.1 OpenACC Directives on Data

Description

When distributed arrays appear in OpenACC constructs, global indices in distributed
arrays are used. The distributed arrays may appear in the update, enter data, exit

data, host data, cache, and declare directives, and the data clause accompanied by some of
deviceptr, present, copy, copyin, copyout, create, and delete clauses. Data transfer of
distributed array by OpenACC is performed on only nodes which have elements specified by
the global indices.

Example

XcalableACC Fortran
integer :: a(N), b(N)

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

!$xmp align b(i) with t(i)

...

!$acc enter data copyin(a(1:K))

!$acc data copy(b)

10 ...

XcalableACC C
int a[N], b[N];

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i] 5

#pragma xmp align b[i] with t[i]

...

#pragma acc enter data copyin(a[0:K])

#pragma acc data copy(b)

{ ... 10

Figure 2.1: Code example in XcalableMP extensions with enter data directive

In lines 2-6 of Fig. 2.1, the directives declare the distributed arrays a and b. In line 8, the
enter data directive transfers the certain range of the distributed array a from host memory

5



6 CHAPTER 2. XCALABLEMP EXTENSIONS

to accelerator memory. Note that the range is represented by global indices. In line 9, the data
directive transfers the whole distributed array b from host memory to accelerator memory.

2.1.2 OpenACC Loop Construct

Description

In order to perform a loop statement on accelerators in nodes in parallel, XcalableMP loop

directive and OpenACC loop directive are used. While XcalableMP loop directive performs a
loop statement in nodes in parallel, OpenACC loop directive also performs the loop statement
parallelized by the XcalableMP loop directive on accelerators in parallel. For ease of writing,
the order of XcalableMP loop directive and OpenACC loop directive does not matter.

When acc clause appears in XcalableMP loop directive with reduction clause, the directive
performs a reduction operation for a variable specified in the reduction clause on accelerator
memory.

Restriction

• In OpenACC compute region, only XcalableMP loop directive without reduction

clause can be inserted.

• In OpenACC compute region, targeted loop condition (lower bound, upper bound, and
step of the loop) must remain unchanged.

• acc clause in XcalableMP loop directive can appear only when reduction clause appears
there.

Example 1

XcalableACC Fortran
integer :: a(N), b(N)

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

!$xmp align b(i) with t(i)

...

!$acc parallel loop copy(a, b)

!$xmp loop on t(i)

10 do i=0, N

b(i) = a(i)

end do

!$acc end parallel

XcalableACC C
int a[N], b[N];

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i] 5

#pragma xmp align b[i] with t[i]

...

#pragma acc parallel loop copy(a, b)

#pragma xmp loop on t[i]

for(int i=0;i<N;i++){ 10

b[i] = a[i];

}

Figure 2.2: Code example in XcalableMP extensions with OpenACC loop construct

In lines 2-6 of Fig. 2.2, the directives declare distributed arrays a and b. In line 8, the
parallel directive with the data clause transfers the distributed arrays a and b from host
memory to accelerator memory. Moreover, in lines 8-9, the parallel directive and XcalableMP
loop directive perform the next loop statement on accelerators in nodes in parallel.
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Example 2

XcalableACC Fortran
integer :: a(N), sum = 10

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

...

!$acc parallel loop copy(a, sum) reduction(+:sum)

!$xmp loop on t(i) reduction(+:sum) acc

do i=0, N

10 sum = sum + a(i)

end do

!$acc end parallel loop

XcalableACC C
int a[N], sum = 10;

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

5 #pragma xmp align a[i] with t[i]

...

#pragma acc parallel loop copy(a, sum) reduction(+:sum)

#pragma xmp loop on t[i] reduction(+:sum) acc

for(int i=0;i<N;i++){

10 sum += a[i];

}

Figure 2.3: Code example in XcalableMP extensions with OpenACC loop construct with reduc-
tion clause

In lines 2-5 of Fig. 2.3, the directives declare distributed array a. In line 7, the parallel

directive with the data clause transfers the distributed array a and variable sum from host
memory to accelerator memory. Moreover, in lines 7-8, the parallel directive and XcalableMP
loop directive perform the next loop statement on accelerators in nodes in parallel. When
finishing the calculation of the loop statement, OpenACC reduction clause and XcalableMP
reduction and acc clauses in lines 7-8 perform a reduction operation for the variable sum on
accelerators in nodes.

2.2 Communication on Accelerated Clusters

2.2.1 XcalableACC Directives

XcalableACC directives are extensions of reflect, gmove, barrier, reduction, bcast, and
wait async directives in XcalableMP global-view memory model. Moreover, reflect init

and reflect do directives are added as extensions of the reflect directive. XcalableACC
directives are directives which are added an acc clause to the above directives. XcalableACC
directives transfer data stored on accelerator memory. Note that while XcalableACC gmove

directive described in Section 2.2.1.1 and coarray features described in Section 2.2.2 can perform
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communication both among accelerator memories and between accelerator memory and host
memory on different nodes, other directives can perform communication only among accelerator
memories.

This section describes only the extended parts of XcalableACC directives from XcalableMP
directives. For other information, refer to the XcalableMP specification[1].

2.2.1.1 reflect Construct

Synopsis

The reflect construct assigns the value of a reflection source to the corresponding shadow
object.

Syntax

[F] !$xmp reflect ( array-name [, array-name]... )
[width ( reflect-width [, reflect-width]... )] [orthogonal] [async ( async-id )] [acc]

[C] #pragma xmp reflect ( array-name [, array-name]... )
[width ( reflect-width [, reflect-width]... )] [orthogonal] [async ( async-id )] [acc]

where reflect-width must be one of:

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

Description

When the acc clause is specified, the reflect construct updates each of the shadow object of
the array specified by array-name on accelerator memory with the value of its corresponding
reflection source.

Restriction

• When the acc clause is specified, the arrays specified by the sequence of array-name’s
must be allocated on accelerator memory.

• This construct must not appear in OpenACC compute region.

Example

XcalableACC Fortran
integer :: a(N)

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

!$xmp shadow a(1)

...

!$acc enter data copyin(a)

!$xmp reflect (a) acc

XcalableACC C
int a[N];

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i] 5

#pragma xmp shadow a[1]

...

#pragma acc enter data copyin(a)

#pragma xmp reflect (a) acc

Figure 2.4: Code example in reflect construct
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In lines 2-5 of Fig. 2.4, the directives declare distributed array a. In line 6, the shadow directive
allocates shadow areas of the distributed array a. In line 8, the enter data directive transfers
the distributed array a with the shadow areas from host memory to accelerator memory. In
line 9, the reflect directive updates the shadow areas of the distributed array a on accelerator
memory between neighboring nodes.

2.2.1.2 reflect init and reflect do Constructs

Synopsis

Since the reflect init construct performs the initialization processes of the reflect construct,
the reflect do construct performs communication of the reflect construct.

Syntax

[F] !$xmp reflect init ( array-name [, array-name]... )
[width ( reflect-width [, reflect-width]... )] [orthogonal] [async ( async-id )] [acc]

[C] #pragma xmp reflect init ( array-name [, array-name]... )
[width ( reflect-width [, reflect-width]... )] [orthogonal] [async ( async-id )] [acc]

where reflect-width must be one of:

[/periodic/] int-expr
[/periodic/] int-expr : int-expr

[F] !$xmp reflect do ( array-name [, array-name]... ) [async ( async-id )] [acc]
[C] #pragma xmp reflect do ( array-name [, array-name]... ) [async ( async-id )] [acc]

Description

The reflect construct is divided into reflect init and reflect do constructs to improve
performance like the MPI persistent communication[3].

As a typical example, if a reflect construct is called repeatedly with the same condition in a
loop statement, inserting a reflect init construct before the loop statement and replacing the
reflect construct with a reflect do construct will improve its performance because unneeded
initialization processes are removed.

Restriction

• When the acc clause is specified, the arrays specified by the sequence of array-name’s
must be allocated on accelerator memory.

• These constructs must not appear in OpenACC compute region.

• The reflect init directive must execute before the reflect init directive executes.

Example

In lines 2-5 of Fig. 2.5, the directives declare distributed array a. In line 6, the shadow directive
allocates shadow areas of the distributed array a. In line 8, the enter data directive transfers
the distributed array a with the shadow areas from host memory to accelerator memory. In
line 9, the reflect init directive performs initialization processes for the reflect do construct
which targets the distributed array a. In line 11, the reflect do directive updates the shadow
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XcalableACC Fortran
integer :: a(N)

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

!$xmp shadow a(1)

...

!$acc enter data copyin(a)

!$xmp reflect_init (a) acc

10 ...

!$xmp reflect_do (a) acc

XcalableACC C
int a[N];

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i] 5

#pragma xmp shadow a[1]

...

#pragma acc enter data copyin(a)

#pragma xmp reflect_init (a) acc

... 10

#pragma xmp reflect_do (a) acc

Figure 2.5: Code example in reflect init and reflect do constructs

areas of the distributed array a on accelerator memory between neighboring nodes without
its initialization processes.

2.2.1.3 gmove Construct

Synopsis

The gmove construct allows an assignment statement, which may cause communication, to be
executed possibly in parallel by the executing nodes.

Syntax

[F] !$xmp gmove [in | out] [async ( async-id )] [acc[(variable)]]
[C] #pragma xmp gmove [in | out] [async ( async-id )] [acc[(variable)]]

Description

• When the acc clause is specified and the variable is not specified by variable in the paren-
thesis, variables of both sides in the assignment statement on accelerator memory are
targeted.

• When the acc clause is specified and the variable is specified by variable in the parenthesis,
the specified variable on accelerator memory is targeted, and the unspecified variable on
host memory is targeted.

Restriction

• The variables targeted on accelerator memory must be allocated on accelerator memory.

• This construct must not appear in OpenACC compute region.

Example

In lines 2-6 of Fig. 2.6, the directives declare distributed arrays a and b. In line 8, the enter
data directive transfers the distributed arrays a and b from host memory to accelerator
memory. In lines 9-10, the gmove construct copies the whole distributed array b to that of
the distributed array a on accelerator memories. In lines 12-13, the gmove construct copies
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XcalableACC Fortran
integer :: a(N), b(N)

!$xmp template t(N)

!$xmp nodes p(*)

!$xmp distribute t(block) onto p

5 !$xmp align a(i) with t(i)

!$xmp align b(i) with t(i)

...

!$acc enter data copyin(a, b)

!$xmp gmove acc

10 a(:) = b(:)

!$xmp gmove acc(b)

a(:) = b(:)

XcalableACC C
int a[N], b[N];

#pragma xmp template t[N]

#pragma xmp nodes p[*]

#pragma xmp distribute t[block] onto p

#pragma xmp align a[i] with t[i] 5

#pragma xmp align b[i] with t[i]

...

#pragma acc enter data copyin(a, b)

#pragma xmp gmove acc

a[:] = b[:]; 10

#pragma xmp gmove acc(b)

a[:] = b[:];

Figure 2.6: Code example in gmove construct

the whole distributed array b on accelerator memory to that of the distributed array a on
host memory.

2.2.1.4 barrier Construct

Synopsis

The barrier construct specifies an explicit barrier at the point at which the construct appears.

Syntax

[F] !$xmp barrier [on nodes-ref |template-ref] [acc]
[C] #pragma xmp barrier [on nodes-ref | template-ref] [acc]

Description

• When the acc clause is specified, the barrier construct blocks until all ongoing asyn-
chronous operations on accelerators are completed.

• When the acc clause is not specified, the barrier construct does not guarantee that an
ongoing asynchronous operation on accelerator is completed.

Example

XcalableACC Fortran
!$xmp nodes p(*)

...

!$xmp barrier acc

XcalableACC C
#pragma xmp nodes p[*]

...

#pragma xmp barrier acc

Figure 2.7: Code example in barrier construct

In line 1, the nodes directive defines node set p. In line 3, the barrier directive performs a
barrier operation for accelerators on all node.
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2.2.1.5 reduction Construct

Synopsis

The reduction construct performs a reduction operation among nodes.

Syntax

[F] !$xmp reduction ( reduction-kind : variable [, variable ]... )
[on node-ref | template-ref] [async ( async-id )] [acc]

where reduction-kind is one of:
+

*

.and.

.or.

.eqv.

.neqv.

max

min

iand

ior

ieor

[C] #pragma xmp reduction ( reduction-kind : variable [, variable ]... )
[on node-ref | template-ref] [async ( async-id )] [acc]

where reduction-kind is one of:
+

*

&

|

^

&&

||

max

min

Description

When the acc clause is specified, the reduction construct performs a type of reduction operation
specified by reduction-kind for the specified local variables among the accelerators and sets the
reduction results to the variables on each of the accelerators.

Restriction

• When the acc clause is specified, the variables specified by the sequence of variable’s must
be allocated on accelerator memory.

• This construct must not appear in OpenACC compute region.
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XcalableACC Fortran
integer :: a

!$xmp nodes p(*)

...

!$acc enter data copyin(a)

5 !$xmp reduction(+:a) acc

XcalableACC C
int a;

#pragma xmp nodes p[*]

...

#pragma acc enter data copyin(a)

#pragma xmp reduction(+:a) acc 5

Figure 2.8: Code example in reduction construct

Example

In line 2, the nodes directive defines node set p. In line 4, the enter data directive transfers
the local variable a from host memory to accelerator memory. In line 5, the reduction directive
calculates a total value of the variable a stored on each accelerator memory in each node.

2.2.1.6 bcast Construct

Synopsis

The bcast construct performs broadcast communication from a specified node.

Syntax

[F] !$xmp bcast ( variable [, variable]... ) [from nodes-ref | template-ref]
[from device devices-ref] [on nodes-ref] | template-ref] [async ( async-id )] [acc]

[C] #pragma xmp bcast ( variable [, variable]... ) [from nodes-ref | template-ref]
[from device devices-ref ] [on nodes-ref | template-ref] [async ( async-id )] [acc]

Description

When the acc clause is specified, the values of the variables specified by the sequence of variable’s
on accelerator memory (called broadcast variables) are broadcasted from the node specified
by the from clause (called the source node) to each of the nodes in the node set specified
by the on clause. Moreover, the from device clause specifies a device which has broadcast
variables. Generally, the from device clause is used when a devices directive is used which is
described in Section 3.1.1. If there is no from device clause, it is assumed that the default device
is specified. After executing this construct, the values of the broadcast variables become the
same as those in the source node.

Restriction

• When the acc clause is specified, the variables specified by the sequence of variable’s must
be allocated on accelerator memory.

• This construct must not appear in OpenACC compute region.

Example 1

In line 2, the nodes directive defines node set p. In line 4, the enter data directive transfers
the local variable a from host memory to accelerator memory. In line 5, the bcast directive
broadcasts the variable a stored on accelerator memory to all nodes.
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XcalableACC Fortran
integer :: a

!$xmp nodes p(*)

...

!$acc enter data copyin(a)

5 !$xmp bcast(a) acc

XcalableACC C
int a;

#pragma xmp nodes p[*]

...

#pragma acc enter data copyin(a)

#pragma xmp bcast(a) acc 5

Figure 2.9: Code example in bcast construct

Example 2

XcalableACC Fortran
integer :: a

!$xmp nodes p(*)

!$acc devices d(*)

...

5 !$acc enter data copyin(a) on_device(d)

!$xmp bcast(a) from_device d(1) from p(2) acc

XcalableACC C
int a;

#pragma xmp nodes p[*]

#pragma acc devices d[*]

...

5 #pragma acc enter data copyin(a) on_device(d)

#pragma xmp bcast(a) from_device d[0] from p[1] acc

Figure 2.10: Code example in bcast construct with from device clause

In line 2, the nodes directive defines node set p. In line 3, the devices directive defines device
set d. In line 5, the enter data directive with on device clause transfers the local variable
a from host memory to all accelerator memories. Note that the on device clause is described
in Section 3.1.2. In line 6, the bcast directive broadcasts the variable a stored on accelerator
memory on d(1) of p(2) to all accelerator memories of all nodes.

2.2.1.7 wait async Construct

Synopsis

The wait async construct guarantees asynchronous communications specified by async-id are
complete.

Syntax

[F] !$xmp wait async ( async-id [, async-id ]...) [on nodes-ref | template-ref] [acc]
[C] #pragma xmp wait async ( async-id [, async-id ]...) [on nodes-ref | template-ref]

[acc]
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Description

When the acc clause is specified, the wait async construct blocks and therefore statements
following it are not executed until all of the asynchronous communications that are specified by
async-id’s and issued on the accelerators in node set specified by the on clause are complete.

Restriction

This construct must not appear in OpenACC compute region.

Example

XcalableACC Fortran
integer :: a

!$xmp nodes p(*)

...

!$acc enter data copyin(a)

5 !$xmp reduction(+:a) acc async(1)

...

!$xmp wait_async(1) acc

XcalableACC C
int a;

#pragma xmp nodes p[*]

...

#pragma acc enter data copyin(a)

#pragma xmp reduction(+:a) acc async(1) 5

...

#pragma xmp wait_async(1) acc

Figure 2.11: Code example in wait async construct

In line 2, the nodes directive defines node set p. In line 4, the enter data directive transfers
the local variable a from host memory to accelerator memory. In line 5, the reduction directive
performs asynchronously. In line 7, the wait async construct blocks until the asynchronous
reduction operation at line 5 is complete.

2.2.2 Coarray Features

Synopsis

XcalableACC can perform one-sided communication (put/get operations) for data on accelerator
memory using coarray features, which is based on XcalableMP local-view memory model.
A combination of coarray syntax and host data construct enables communication between
accelerators.

Description

If coarrays appear in use device clause of any enclosing host data construct, communication
targets data on the accelerator side. Coarray operations on accelerators are synchronized using
the same synchronization functions in XcalableMP.

Restriction

• Only declare directive can declare a coarray on accelerator memory. For example, enter
data and copy directives cannot declare a coarray on accelerator memory.

• The coarray syntax must not appear in OpenACC compute region.



16 CHAPTER 2. XCALABLEMP EXTENSIONS

XcalableACC Fortran
integer :: a(N)[*]

integer :: b(N)

!$acc declare create(a, b)

...

5 if(this_image() == 1) then

!$acc host_data use_device(a, b)

a(:)[2] = b(:)

!$acc host_data use_device(a)

10 b(:) = a(:)[3]

end if

...

sync all

XcalableACC C
int a[N]:[*];

int b[N];

#pragma acc declare create(a, b)

...

if(xmpc_this_image() == 1){ 5

#pragma acc host_data use_device(a, b)

a[:]:[2] = b[:];

#pragma acc host_data use_device(a)

b[:] = a[:]:[3]; 10

}

...

xmp_sync_all(NULL);

Figure 2.12: Code example in coarray features

Example

In line 3 of Fig. 2.12, the declare directive declares a coarray a and an array b on accelerator
memory. In lines 6-7, image 1 performs put operation, where the whole array b on accelerator
memory in image 1 is transferred to the coarray a on accelerator memory in image 2. In lines 9-
10, image 1 performs get operation, where the whole coarray a on accelerator memory in image
3 is transferred to the array b on host memory in image 1. In line 13, the sync all statement in
XcalableACC Fortran or the xmp sync all function in XcalableACC C synchronizes all images
and guarantees completion of ongoing coarray operations.



Chapter 3

OpenACC Extensions

This chapter defines an extension of OpenACC in XcalableACC. The extension can represent
offload works to multiple-accelerators on each node.

3.1 Device Set Definition and Reference

3.1.1 devices Directive

Synopsis

The devices directive declares a set of devices.

Syntax

[F] !$acc devices devices-decl [, devices-decl ]...
[C] #pragma acc devices devices-decl [, devices-decl ]...

where device-decl is one of:

devices-name ( devices-spec )

devices-name ( devices-spec ) [ = predefined-devices-ref ]
[C] devices-name [ devices-spec ]

[C] devices-name [ devices-spec ] [ = predefined-devices-ref ]

and devices-spec is one of:

*
int-expr

and predefined-devices-ref is one of:

device-type-name ( * | int-expr | int-expr : int-expr)
device-type-name [ * | int-expr | int-expr : int-expr]

Description

The device directive declares a device array that corresponds to a device set.

The first and third forms are used to declare a device array that corresponds to a set of the
entire default devices. The second and fourth forms are used to declare a device array, each
device of which is assigned to a device of the device set is specified by predefined-devices-ref at
the corresponding position.

17
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Restriction

• devices-name must not conflict with any other local name in the same scoping unit.

• This construct must not appear in OpenACC compute region.

Example

The following are examples of the devices declaration. The device array d corresponds to a set
of entire default devices and the device array e is a subset of the predefined device array nvidia.
The program must be executed by a node which has four or more NVIDIA accelerator devices.

XcalableACC Fortran
!$acc devices d(*)

!$acc devices e(2) = nvidia(3:4)

XcalableACC C
#pragma acc devices d[*]

#pragma acc devices e[2] = nvidia[2:2]

Figure 3.1: Code example in XcalableACC devices directive

3.1.1.1 Default Device Set

Synopsis

The default device set is the targeting device set when the on device clause is omitted.

Description

The default device set is the device set which contains the all OpenACC default devices on the
node. The device type of each device of the set equals to acc device default, and the size of the
set equals to a result of acc get num devices(acc device default).

3.1.1.2 Device Reference

Synopsis

The device reference is used to reference a device set.

Syntax

devices-ref is devices-name [( devices-subscript )]
[C] devices-ref is devices-name [[ devices-subscript ]]

where devices-subscript must be one of:

int-expr
triplet

Description

A device reference by devices-name represents a device set corresponding to the device array
specified by the name or its subarray.
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Example

Assume that d is the name of a device array.

• To specify a device set to which the declared device array corresponds,

XcalableACC Fortran
!$acc devices e(1) = d(1)

!$acc devices f(3) = d(2:4)

XcalableACC C
#pragma acc devices e[1] = d[0]

#pragma acc devices f[3] = d[1:3]

• To specify a device array that corresponds to the executing device array set in the barrier
directive.

XcalableACC Fortran
!$acc barrier_device on_device(d)

XcalableACC C
#pragma acc barrier_device on_device(d)

3.1.2 on device clause

Synopsis

The on device clause specifies a execution device set for the directive.

Syntax

on_device( devices-ref )

Description

The on device clause may appear on parallel, parallel loop, kernels, kernels loop,
data, enter data, exit data, declare, update, wait, and barrier device directives.

The on device clause specifies a device set which the directive targets. The directive is applied
to each device of the device set in parallel. If there is no layout clause, the all devices process
the directive for same data or work redundantly.

If no on device clause appears on a declare directive with a layout clause, it is assumed that
the default device set is specified by on device clause. If no on device clause appears on a
barrier device directive, it is assumed that the default device set is specified by on device

clause. If no on device clause appears on a data, enter data, exit data, or update directives,
if the arrays are alreadly declared by declare directive, the device set that specified at the
declare directive is targeted. In the other cases, the directive behaves the same as normal
OpenACC.

3.2 Data and Work Mapping Clauses

3.2.1 layout Clause

Synopsis

The layout clause specifies data or work mapping on devices.
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Syntax

In declare directive:

[F] layout( ( dist-format [, dist-format ] ... ) )

[C] layout( [ dist-format ] [ [ dist-format ] ] ... )

where dist-format must be one of:

*

block

In loop, parallel loop, and kernels loop construct:

[F] layout( array-name ( layout-subscript [, layout-subscript ] ... ) )

[C] layout( array-name [ layout-subscript ] [ [ layout-subscript ] ] ... )

where layout-subscript must be one of:

scalar-int-variable [ { + | - } int-expr ]
*

Description

The layout clause may appear on declare directives and on loop, parallel loop, and kernels

loop constructs. If the layout clause appears on a declare directive, it specifies the data
mapping to the device set for arrays which are appeared in data clauses on the directive. “*”
represents that the dimension is not distributed, and block represents that the dimension is
divided into contiguous blocks, which are distributed onto the device array.

If the layout clause appears on a loop, parallel loop, or kernels loop directive, it specifies
the mapping for the immediately following loop. If loop-index appears in layout-subscript, the
loop is distributed to the device set in the same manner as the dimension where the loop-index
appears. If there is no on device clause on the construct, it is assumed that the device set on
which the array is distributed is specified by on device clause.

Restriction

• loop-index must be a control variable of a loop.

Example

The following are examples of the layout clause. In line 2, the devices directive defines device
set d. In line 3-4, the declare directive declares that an array a is distributed and allocated on
the device set d. In line 6–9, the kernels loop directive distributes the loop and offloads the
loops to the device set d.

3.2.2 shadow Clause

Synopsis

The shadow clause allocates the shadow area for a distributed array on devices.
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XcalableACC Fortran
integer :: a(N)

!$acc devices d(*)

!$acc declare create(a)

!$acc+layout((block)) on_device(d)

5 ...

!$acc kernels loop layout(a(i))

do i = 1, N

a(i) = i * 2

end do

XcalableACC C
int a[N];

#pragma acc devices d[*]

#pragma acc declare create(a) \

layout([block]) on_device(d)

... 5

#pragma acc kernels loop layout(a[i])

for(int i = 0; i < N; i++){

a[i] = i * 2;

}

Figure 3.2: Code example in XcalableACC layout clause

Syntax

[F] shadow( ( shadow-width [, shadow-width ] ... ) )

[C] shadow( [ shadow-width ] [ [ shadow-width ] ] ... )

where shadow-width must be one of:

int-expr
int-expr : int-expr

Description

The shadow clause may appear on declare directives. The shadow clause specifies the width of
the shadow area of arrays on the declare directive, which is used to communicate the neighbor
element of the block of the arrays. When shadow-width is of the form “int-expr : int-expr,” the
shadow area of the width specified by the first int-expr is added at the lower bound and that
specified by the second one at the upper bound in the dimension. When shadow-width is of the
form int-expr, the shadow area of the same width specified is added at both the upper and lower
bounds in the dimension.

Restriction

• shadow clause must appear with layout clause.

• The value specified by shadow-width must be a non-negative integer.

• The number of shadow-width must be equal to the number of dimensions (or rank) of the
arrays on the declare directive.

• If an array is also distributed on nodes, a shadow-width of shadow clause must be same
as the shadow-width of XcalableMP shadow directive for the same dimension.

Example

The following are examples of the shadow clause. In line 2, the devices directive defines device
set d. In line 3-5, the declare directive declares that an array a is distributed and allocated
with shadow areas on the device set d. In line 7–10, the kernels loop construct divides and
offloads the loop to the device set d. In line 11, the reflect directive updates the shadow areas
of the distributed array a on devices.
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XcalableACC Fortran
integer :: a(N)

!$acc devices d(*)

!$acc declare create(a)

!$acc+layout((block))

5 !$acc+shadow((1:1)) on_device(d)

...

!$acc kernels loop layout(a(i))

do i = 1, N

a(i) = i * 3

10 end do

!$acc reflect(a)

XcalableACC C
int a[N];

#pragma acc devices d[*]

#pragma acc declare create(a) \

layout([block]) \

shadow([1:1]) on_device(d) 5

...

#pragma acc kernels loop layout(a[i])

for(int i = 0; i < N; i++){

a[i] = i * 3;

} 10

#pragma acc reflect(a)

Figure 3.3: Code example in XcalableACC shadow clause

3.3 Synchronization on Accelerators

3.3.1 barrier device Construct

Synopsis

The barrier device construct specifies an explicit barrier among devices at the point which
the construct appears.

Syntax

[F] !$acc barrier_device [on_device( devices-ref )]
[C] #pragma acc barrier_device [on_device( devices-ref )]

Description

The barrier device construct blocks accelerator devices until all ongoing asynchronous operations
on them are completed regardless of the host operations. The construct is performed among
the device set specified by the on device clause. If no on device clause is specified, then it is
assumed that the default device set is specified in it.

Restriction

• This construct must not appear in OpenACC compute region.

Example

The following are examples of the barrier devices construct. In line 1–2, the devices directives
define device set d and e. In line 4–5, the first barrier device construct performs a barrier
operation for all devices, and the second one performs a barrier operation for devices in the
device set e.
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XcalableACC Fortran
!$acc devices d(*)

!$acc devices e(2) = d(1:2)

...

!$acc barrier_device

5 !$acc barrier_device on_device(e)

XcalableACC C
#pragma acc devices d[*]

#pragma acc devices e[2] = d[0:2]

...

#pragma acc barrier_device

#pragma acc barrier_device on_device(e) 5

Figure 3.4: Code example in XcalableACC barrier device construct
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