SC09 HPC Challenge Submission for XcalableMP

Jinpil Lee Mitsuhisa Sato
Graduate School of Systems Center for Computational Sciences
and Information Engineering University of Tsukuba
University of Tsukuba msato@cs.tsukuba.ac.jp

jinpil@hpcs.cs.tsukuba.ac.jp

I. INTRODUCTION

XcalableMP is a directive-based language extension which allows users to develop parallel programs for distributed
memory systems easily and tune the performance by having minimal and simple notations.

Distributed Memory systems such as PC clusters are the typical platform for high performance computing, and most
users write their programs using MPI. Although MPI is a de-facto standard for parallel programming for distributed memory
systems, writing MPI programs is often a cumbersome and complicated process. So far, there have been a number of parallel
programming languages for distributed memory architectures, including High Performance Fortran (HPF). However, these
programming models have not been commonly used any more. On the other hand, OpenMP is widely used on shared
memory architectures including SMP-configured PC clusters or multi-core CPUs. The most important feature of OpenMP
from the perspective of programmability is to enable parallelization with simple directives that helps users extend their codes
relatively easily from sequential ones. The target platform of OpenMP is however limited to shared memory architectures.

XcalableMP Application Program Interface (XcalableMP API) is a collection of compiler directives, runtime library
routines that can be used to specify distributed-memory parallel programming in C and Fortran program. This specification
provides a model of parallel programming for distributed memory multiprocessor systems, and the directives extend the C
and Fortran base languages as to describe distributed memory parallel program, as in OpenMP. XcalableMP supports typical
parallelization based on the data parallel paradigm and work mapping under "global view”, and enables parallelizing the
original sequential code using minimal modification with simple directives, like OpenMP. It also includes CAF-like PGAS
(Partitioned Global Address Space) feature as "local view” programming. The important design principle of XcalableMP is
"performance-awareness”. All actions of communication and synchronization are taken by directives, different from automatic
parallelizing compilers. The user should be aware of what happens by XcalableMP directives in the execution model on the
distributed memory architecture. This is very important for béingasy-to-understarid in performance tuning.

The specification has been being designed by XcalableMP Specification Working Group which consists of members from
academia and research labs to industries. The development of prototype compilers are supported by "Seamless and Highly-
productive Parallel Programming Environment for High-performance computing” project funded by Ministry of Education,
Culture, Sports, Science and Technology, JAPAN. XcalableMP is being designed based on the experiences of HPF, Fujitsu
XPF (VPP Fortran) and OpenMPD. The XcalableMP specification and document are available at http:/www.xcalablemp.org.

In this submission we present results for the four HPC Challenge Type 2 programs - Stream, Random Access, FT and
LU in XcalableMP using C as a base language. Since our compiler and runtime system of our implementation are still
preliminary, we mainly focus on programmability of XcalableMP. We present performance numbers for Stream, Random
Access and FT running on a Linux PC cluster.

Il. XCALABLEMP OVERVIEW
A. Execution Model and Nodes directive

The target of XcalableMP is a distributed memory system. Each compute node, which may have several cores sharing
main memory, has its own local memory, and each node is connected via network. Each node can access and modify its local
memory directly, and can access the memory on the other nodes via communication. It is however assumed that accessing
remote memory is much slower than the access of local memory.

The basic execution model of XcalableMP is a SPMD (Single Program Multiple Data) model on distributed memory. In
each node, a program starts from the same main routine. An XcalableMP program begins as a single thread of execution in
each node. The set of nodes when starting a program is called entire nodes.

When the thread encounters XcalableMP directives, the synchronization and communication occurs between nodes. That
is, no synchronization and communications happen without directives. In this case, the program does duplicated execution

of the same program on local memory in each node. As default, data declared in the program is allocated in each node, and
is referenced locally by threads executed in the node.

Node directive declares a node array to express a set of nodes. The following directives declare the entire nodes as an
array of 16 nodes.

#pragma xmp nodes p(16)

A task is a specific instance of executable code and its data environments executed in a set of nodes. A task when starting
a program in entire nodes is called an initial task. The initial task can generate a subtask which executes on a subset of the
nodes by task construct. A set of nodes executing the same task is called executing nodes. If no task construct is encountered,
a program is executed as one task, and its executing nodes are entire nodes.

The task construct is used to execute a block of code on the specified node. For example, the following code execute the
block only on the master node (specified by 1), as master directive of OpenMP.

#pragma xmp task on 1
{ ... block ...}

XcalableMP supports two models of viewing data: global-view programming model and local-view programming model.
In local-view programming model, accesses to data in remote nodes are done explicitly by language extension for get/put
operations on remote nodes with node number of the target nodes, while reference to local data is executed implicitly.

B. Global View Programming Model

The global-view programming model is useful when, starting from sequential version of the program; the programmer
parallelizes it in data-parallel model by adding directives incrementally with minimum modifications. As these directives
can be ignored as a comment by the compilers of base languages (C and Fortran), an XcalableMP program derived from a
sequential program can preserve the integrity of original program when it is run sequentially.

The global-view programming model shares major concepts with HPF. The programmer describes the data distribution
of data shared among the nodes by data distribution directives. To specify the data distribution, the template is used as a
dummy array distributed on nodes.

#pragma xmp nodes P(4)
#pragma xmp template T(0:15)
#pragma xmp distribute T(block) onto p

Block, cyclic, block-cyclic and gen-block distribution are supported. In this example, the one-dimensional template T is
distributed on four nodes in the same size of blocks. A distributed array is declared by aligning the array to the template
by align directive. In the following fragment of code, an array A is aligned to the template, that is, with block distribution

double A[16];
#pragma xmp align A[i] with T(i)

Figure 1 shows the assignment of a one-dimensional array A to four nodes. Each node is assigned an actual portion of
the whole array to use, denoted by a gray/red colored part in Figure 1.

12 13 14 15

[0} 1 2 3 4 5 6 7 8 9 10 11
arrav [] T [[[[|

vooer [T T [T T [T T |
vooez [T [[A [[

vooes [T [T T [T T -
vooea | [[[| | | [| | | |

Figure 1. Data distribution and iteration

Loop construct maps iterations to the node where referenced data is located. Template is used to specify the mapping of
iteration. By using the same template used for the data distribution, iterations are assigned to the node of the data. It should

be noted that in XcalableMP the programmer must control all data reference required computations done locally by any
appropriate directives. For example, consider the following XcalableMP loop:

#pragma xmp loop on t(i)
for(i = 2; i <= 10; i++)
array[i] = . . .

Figure ?? shows an example where the loop actually scans the array elements a[2] to a[10] while the size of array is 16.

Global-view communication directives are used to synchronize between nodes, keep the consistency of shadow area, and
move a part or all of distributed data globally. In XcalableMP, the inter-node communication must be described explicitly.
The compiler guarantees that communication takes place only if communication is explicitly specified.

The gmove construct is a powerful operation in global-view programming in XcalableMP: It copies data of a distributed
array in global-view. This directive is followed by the assignment statement of scalar value and array sections. The assignment
operation of the array sections of a distributed array may require communication between nodes. In XcalableMP, C language
is extended to support array section notation to support an assignment of array objects.

The gmove construct must be executed by nodes in the executing node set. And the value of scalar objects, and index
value, range value of array section in the assignment statement must be same in every node executing this directive. When
no option is specified, the copy operation is performed collectively by all nodes in the executing node set. In this case, all
elements in both source array and target array must be distributed on to the executing node set. For example, the following
example executes all-to-all communication to perform data copy between arrays which have different distribution.

double X[16][16], Y[16][16];
#pragma xmp align X]i][*] with T(i)
#pramga xmp align Y[=][i] with T(i)

#pragma xmp gmove
X[l = YL/ array section assignment, which execute all-to-all comm

If the right hand side is owned by one node, the gmove operation is implemented as a broadcast communication.

The shadow directive specifies the shadow width of which area is used to communicate the neighbor element of block of
a distributed array. The data stored in the storage area declared by the shadow directive is called shadow object. The reflect
directive assigns the value of a reflection source to a shadow object for variables having the shadow attribute. Of the data
allocated to a storage area other than a shadow area, data representing the same array element as that of a shadow objec
is called a reflection source of the shadow object.

For collective communications, barrier, reduction and broadcast operation are provided by the directives.

C. Local View Programming

Local view is suitable for the programs explicitly describing the algorithm of each node and explicit remote data reference.
As MPI is considered to have the local view, the local view programming model of XcalableMP has high interoperability
with MPI.

XcalableMP adopts coarray notations as an extension of languages for local view programming. In case of Fortran as
the base language, most coarray notations are compatible to that of Coarray Fortran(CAF) expect that the task constructs
are used for task parallelism. For example in Fortran, to access an array element of A(i) located on compute node N, the
expression of A(i)[N] is used. If the access is a value reference, then the communication to get the value takes place. If the
access is updating the value, then the communication to put a new value takes place.

In order to use coarray notations in C, we propose some language extension of the language. A coarray is declared by
the coarray directive in C.

#pragma xmp coarray array-variable co-array-dimension
For example,

int A[10], B[10];
#pragma xmp coarray [=*]: A, B

The coarray object is referenced in the following expression:

scalar-variable : [image-index]
array-section-expression:[image-index]

Array section notation is a notation to describe the part of array, which is adpted in Fortran90. In C, an array section has
a form as follows:

array name ‘ [[lower_bound] * : '[upper_bound] O : ' step] *] ..

An array section is built from some subset of the elements of an array object - those associated with a selected subset
of the index range attached to the object. The loWweund and uppebound specify the range of array elements of an
array object. Either the lower bound or the upper bound can be omitted in the index range of a section, in which case they
default to the lowest or highest values taken by the array’s index. So A[:] is a section containing the whole of A. If the
step is specified, the elements of an array section are every "step”-th element in the specified range. For example, B[1:10:3]
is an array section of size 4 containing every third element of B with indices between 1 and 10 (ie, indices 1, 4, 7, 10).
Collectively ranges specified by lowdround, upperbound and step are referred to as triplets. For multi-dimensional arrays,
some dimensions could be subscripted with a normal scalar expression, and some could be “sectioned” with triplets.

For example,

Al[:]= B[:]:[10]; // copy from B on image 10 to A
[1l. | MPLEMENTATION

The overall specification of XcalableMP API is still under design by the XcalableMP Specification Working Group. The
current version of XcalableMP specification is 0.6. We implemented a part of XcalableMP API enough to implement the
benchmark programs. The supported functions and limitations are described as follows:

1) Directives (global view model)

The following directives are implemented in current version.
« #pragma xmp nodes
« #pragma xmp template
« #pragma xmp distribute
block, cyclic distribution can be discribed in distribute directive.
block distribution with irregular chunk size is not supported yet.
block-cyclic distribution is not supported yet.
« #pragma xmp align
« #pragma xmp loop
loop can only be parallelized by template reference.
o #pragma xmp task
execution node on the task should be indicated by template.
« #pragma xmp barrier
« #pragma xmp reduction
+, *, max, min, fistmax, lastmax operations are supported.
Vector(data array) reduction is not supported yet.
« #pragma xmp bcast
Broadcast of vector is not supported yet.
« #pragma xmp coarray
multi-dimensional coarray is not supported yet.
gmove directive used in Linpack and FFT is not implemented yet. We wrote communication functions in MPI, and
called it explicitly in the benchmarks.

2) Remote Memory Access (local view model)

Get/put for scalar variable can be used. The current compiler can parse array section in C language, but it cannot
be used in coarray. In current version, coarray statement should be a simple assignment/accumulation. PLUS, logical
XOR can be used in accumulation. Nested coarray expression cannot be used.

3) User API

« int xmp_get node num(void);
get node number of current communicator.
« int xmp_get num_nodes(void);
get the number of nodes of current communicator.

© 00 ~NO U~ WNEPRP

[En
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

« double xmpget second(void);
get the current time(second)

The compiler was implemented by using Omni OpenMP compiler toolkit. It is a source-to-source compiler which translates
a XcalableMP C program to C code with runtime libraries calls for communications. The runtime libraries are using MPI2
as a communication library.
IV. HPCC RESULTS
A. Platform

We used typical Linux Cluster to evaluate the implemented benchmarks. Table.l shows the node configuration of the
system. We used 16 nodes in maximum for the evaluation.

Table |
NODE CONFIGURATION

CPU Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz (x##)
Memory 8 GB
Network 1000 BASE-T Ethernet

oS Linux kernel 2.6.28 x8664

MPI Open MPI 1.3.2

CLOCJ2] by Al Danial is used to count Lines-Of-Code(LOC).

B. EP-STREAM-Triad

The program is quite straightforward. We describe parallelization of EP-STREAM-Triad in global view model of Xcal-
ableMP. In global view model, as in OpenMP, directives are used to parallelize base on the seridl aligie.. directive is
used to distribute vectors onto each node. Each vector is distributed onto each node and processed simultaioepusly.
directive is added to describe this work-mapping on loop. To get total (triad) bandwidth of the system, reduce operation is
invoked by " reduction” directive.

1) Source Code and LOCWe show parallel code of EP-STREAM-Triad below. The LOC of the code is 98(each
XcalableMP directive is counted as one line).

#include <stdio .h>
#include <float .h>
#include <math.h>

#define Mmin(a, b) (((a)< (b)) ? (a) : (b))

#define NTIMES 10
#define VECTORSIZE 134217728

#pragma xmp nodes p(
#pragma xmp template t(0:134217728)
#pragma xmp distribute t(block) onto p

int size, rank;
double a[VECTORSIZE], b[VECTORSIZE], c[VECTORSIZE];

int
checkSTREAMresults(void)
{
int j, k;
double aj, bj, cj, scalar, asum, bsum, csum, epsilon;
aj = 2.0;
bj = 2.0;
cj = 0.0;

26 scalar = 3.0;
27
28 for (k = 0; k < NTIMES; k++) aj = bj + scalakcj;
29
30 aj = (double) VECTORSIZE;
31 bj = bj x (double) VECTORSIZE;
J =

2
*

32 Cj cj * (double) VECTORSIZE;
33

34 asum = 0.0;

35 bsum = 0.0;

36 csum = 0.0;

37 epsilon = 1.e-8§;

38

39 #pragma xmp loop on t(j) reduction(+:asum, bsum, csum)
40 for (j = 0; j < VECTORSIZE; j++) {

41 asum += a[jl];

42 bsum += bJ[j];

43 csum += c[j];

44 }

45

46 if (fabs(aj—asum)/asum> epsilon) {

47 printf("[%d] Failed Validation on array a[{n”, rank);
48 return 1;

49

50 else if (fabs(bjbsum)/bsum> epsilon) {

51 printf("[%d] Failed Validation on array b[In”, rank);
52 return 1;

53

54 else if (fabs(cjcsum)/csum> epsilon) {

55 printf("[%d] Failed Validation on array c[{n”, rank);
56 return 1,

57}

58 else {

59 printf("[%d] Solution Validatesn”, rank);

60 return O;

61 }

62 }

63

64 int

65 HPCC Stream(doublextriadGBs)

66 {

67 register int j, k;

68 double scalar, times[NTIMES], mintime = FLWAX, curGBs;
69
70 #pragma xmp loop on t(j)

71 for (j = 0; j < VECTORSIZE; j++) {
72 a[j] = 1.0;

73 b[j] = 2.0;

74 c[j] = 0.0;

75}

76

77 #pragma xmp loop on t(j)
78 for (j = 0; j < VECTORSIZE; j++) a[j] = 2.0E0x aj];
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

1

scalar = 3.0;
for (k = 0; k < NTIMES; k++) {
times[k] = —xmp_get_second ();
#pragma xmp loop on t(j)
for (j = 0; j < VECTORSIZE; j++) a[j] = b[j] + scalarc][]j];
times[k] += xmp_get_second ();

}

for (k = 1; k < NTIMES; k++) {
mintime = Mmin(mintime, times[k]);
}

curGBs = (mintime> 0.0 ? 1.0 / mintime : —1.0);
curGBs x= 1le-9 x 3 x sizeof(double)* (VECTORSIZE / size);
xtriadGBs = curGBs;

return checkSTREAMresults ();
¥

int
main (void)
{
int err;
double triadGBs;

rank xmp_get_node num ();
size = xmpget num_nodes();

err = HPCC Stream(&triadGBs);
#pragma xmp reduction (+:err)
#pragma xmp reduction (+:triadGBs)

if (rank == 0) {
printf("%d Errors Found on %d node®”, err, size);
printf("Total Triad GB/s %.6fin", triadGBs);
}
return O;
}

2) Performance ArchievediWe shows performance evaluation results in Figure 2. The vector size is 134217728. Because
the benchmark is embarrassingly parallel, the performance scales well.

C. RandomAccess

The Random Access program is also straightforward. Random Access updates arbitrary array elements for each iteration.
We parallelize this program in local-view programming model. XcalableMP extends the C language to allow coarray
notation[3]. Remote memory access is used to update the element by coarray mechanism. Line 18 declare the array Table
as a coarray, and distribute data manually onto each nodes (Line 79). Coarray is one of the important features of local
view model of XcalableMP. Using coarray, users can describe remote memory access. For example, accumulate remote
memory access (BIT XOR) is described using coarray at Line"@3arrier” directive blocks until all processes of current
communicator have reached it. But it can be also used to synchronize coarray. At Line 65, barrier synchronization is taken
to complete the remote memory access.

1) Source Code and LOCWe show parallel code of RandomAccess below. The LOC of the code is 77.

#include <stdio .h>

GBI/s

1 4.17031

2 8.34807

4 16.6900

Performance (GB/s)

8 32.6532

65.5310

#include

typedef
typedef

#define
#define
#define

© oo ~NOO O WNN

10
11 #define
12 #define
13 #define
14

~
o

[=2]
o

[$2]
o

N
o

w
o

N
o

—_
o

o

/

1 2 3 4 5 6 7 8 9 10 11 12

Number of Nodes

13

14

15

<stdlib .h>

unsigned long long
signed long long

POLY
PERIOD
NUPDATE

XMP_TABLE_SIZE
PROCS
LOCAL SIZE

15 u64int Table[LOCALSIZE];

16

17 #pragma
18 #pragma
19

20 u64int

Xxmp nodes
Xmp coarray Table]

21 HPCC_starts(s64Int n)

22 {

23 int i,

i

24
25
26
27
28
29
30
31
32
33

ué4int m2[64];
u64int temp, ran;

while(n < 0) n += PERIOD;

Figure 2. EP-STREAM-Triad Performance

u4int;
s64int;

0x0000000000000007ULL
1317624576693539401LL
(4 * XMP_TABLE_SIZE)

131072
2
XMP_TABLE_SIZE/PROCS

while (n > PERIOD)
if(n 0) return

temp = 0Ox1;
for (i X

= i < 64;
m2[i] =

temp ;

n —= PERIOD;
0Ox1;

i++) {

34 temp = (temp<< 1) = ((s64Int) temp< 0O ? POLY : 0);
35 temp = (temp<< 1) © ((s64Int) temp< 0 ? POLY : 0);
36 }

37

38 for(i = 62; i >= 0; i—)

39 if((n > i) & 1) break;

40

41 ran = 0x2;
42 while(i > 0) {

43 temp = O;

44 for(j = 0; j < 64; j++)

45 if((ran >> j) & 1) temp "= m2[j];
46 ran = temp;

47 i —= 1;

48 if((n > 1) & 1)

49 ran = (ran<< 1) © ((s64Int) ran< 0 ? POLY : 0);
50 }

51

52 return ran;

53 }

54

55 static void

56 RandomAccessUpdate(u64int s)

57 {

58 ué4int i, temp;

59

60 temp = s;

61 for(i = 0; i < NUPDATE/128; i++) {

62 temp = (temp<< 1) ~ ((s64Int) temp< 0 ? POLY : 0);
63 Table [temp%LOCALSIZE]:[(temp%XMP TABLE_SIZE)/LOCAL_SIZE] "= temp;
64 }

65 #pragma xmp barrier

66 }

67

68 int

69 main(void)

70 {

71 int rank, size;

72 u64iInt i, b, s;

73 double time, GUPs;

74

75 rank = xmp.get node num ();

76 size = xmpget num_nodes();

77 b = (u64iInt)rank = LOCAL_SIZE;

78

79 for(i = 0; i < LOCAL_SIZE; i++) Table[i] = b + i;
80 s = HPCCstarts((s64Int)rank);

81

82 time = —xmp_get second();

83 RandomAccessUpdate(s);

84 time += xmp_get second();

85

86 GUPs = (time> 0.0 ? 1.0 / time : —1.0);
87 GUPs x= 1e—9xNUPDATE;

88
89 #pragma xmp reduction (+:GUPs)

90

91 if(rank == 0) {

92 printf ("Executed on %d node(s)hn”, size);

93 printf ("Time used: %.6f secondm”, time);

94 printf("%.9f Billion (1079) updates per second [GUP/si”, GUPs);
95 }

96

97 return O;

98 }

2) Performance ArchievedWe shows performance evaluation results in Figure 3. The size of table to be updated is
131072. This results shows the performance of remote memory access in XcalableMP.

0.04
0.035 A
% 003
N
o
3 0.025
node(s)| GUP/s % ’\.//
© 002
1 0.02305 ®
5 [0.02154 § oots
4 0.02289 g
8 0.03597 0.01
16 | 0.03369 0,005
0
1 2 4 8 16
Number of Nodss

Figure 3. RandomAccess Performance

D. Linpack

We parallelized the simple sequential Linpack routine (dgefa and dgesl) in Global-view programming model. The matrix is
distributed in a cyclic manner. The pivot is broadcasted and exchanged by gmove directive. The pivot is stored locally in each
node. The BLAS routine is rewritten to express the distribution of the vector, while the original sequential BLAS takes only
the first element of the partial array as a pointer. The parallelization is quite straightforward. Note that this implementation
is not optimal one, but it shows how easy to parallelize a regular numerical algorithm in global-view programming mode
of XcalalbleMP. The dmpxy used in verifications is implemented as an external routine due to some compiler problem.

1) Source Code and LOCWe show parallel code of Linpack below. The LOC of the code is 243.

#include <math.h>
#include <stdio .h>
#include <stdlib .h>

#define ZERO 0.0
#define ONE 1.0
#define EPS 1.0€8

© 00 ~NO O~ WNPRP

#define N 10248

[Eny
o

11 double a[N][N], b[N], x[N], pvt_v[N];
12 int ipvt[N], n, rank, size;

13

14 #pragma xmp nodes

15 #pragma xmp template t(0:(1028)—-1)
16 #pragma xmp distribute t(cyclic) onto p
17 #pragma xmp align a{][i] with t(i)
18 #pragma xmp align b[i] with t(i)

19 #pragma xmp align x[i] with t(i)

20

21 void

22 matgen(double a[N][N], int n, double b[N] , doublenorma)

23 {

24 int init, i, j;

25 double normatemp;

26 #pragma xmp align a{][i] with t(i)
27 #pragma xmp align b[i] with t(i)
28

29 srand48(rank);

30 =«norma = 0.0;

31

32 for (j = 0; j <n; j++) {

33 #pragma xmp loop on t(i)

34 for (i = 0; i < n; i++) {

35 al[jl[i] = drand48();

36 normatemp = (a[j][i] > normatemp) ? a[j][i]
37 }

38 }

39 #pragma xmp reduction (max:norm@gmp)
40

41 xnorma = normatemp;

42

43 #pragma xmp loop on t(i)

44 for (i = 0; i < n; i++) {

45 b[i] = 0.0;

46

47

48 for (j = 0; j < n; j++) {
49 #pragma xmp loop on t(i)

50 for (i = 0; i < n; i++) {

51 b[i] = b[i] +al[jl[i];

52 }

53 1}

54 }

55

56 int

57 A_idamax(int b, int n, double dx[N])
58 {

59 double dmax, gdmax, temp;

60 int i, ix, itemp;

61 #pragma xmp align dx[i] with t(i)
62

63 if (n < 1) return —1;
64 if (n == 1) return O;

normatemp;

65

66 itemp = O;

67 dmax = 0.0;

68

69 #pragma xmp loop on t(i) reduction(lastmax:dmax/itemp/)
70 for (i = b; i < b+n; i++) {

71 temp = dx[i];

72 if (fabs (temp) >= dmax) {

73 itemp = i;

74 dmax = fabs (temp);

75 }

76}

1

78 return itemp;

79 }

80

81 void

82 A_dscal(int b, int n, double da, double dx[N])
83 {

84 int i, m, mpl, nincx;

85 #pragma xmp align dx[i] with t(i)
86

87 if (n <= 0) return;

88

89 #pragma xmp loop on t(i)

90 for (i = b; i < b+n; i++)

91 dx[i] = daxdx[i];

92 }

93

94 void

95 A_daxpy(int b, int n, double da, double dx[N], double dy[N])
96 {

97 int i;

98 #pragma xmp align dx[i] with t(i)
99 #pragma xmp align dy[i] with t(i)
100

101 if (n <= 0) return;

102 if (da == ZERO) return;

103

104 #pragma xmp loop on t(i)

105 for (i = b; i < b+n; i++) {
106 dy[i] = dy[i] + daxdx[i];
107 }

108 }

109

110 void

111 dgefa(double a[N][N], int n, int ipvt[N])
112 {

113 double t;

114 int j, k, kpl, I, nml, i;

115 double x pvt;

116 #pragma xmp align af][i] with t(i)
117

118 nml = n-1;

119

120 for (k = 0; k < nml; k++) {

121

122 kpl = k+1;

123 | = A_idamax(k, nk, al[k]);

124 ipvt[k] = I;

125

126 #pragma xmp task on t(l)

127 if (a[k][I] == ZERO) {

128 printf ("ZERO is detectedn”);
129 exit(1);

130 }

131

132 #pragma xmp gmove

133 pvt_v[k:n—=1] = a[k:n-1][I];

134

135 if (I 1= k) {

136 #pragma xmp gmove

137 alk:n—1][I] = a[k:n—-1][K];
138 #pragma xmp gmove

139 alk:n—1][k] = pvt_v[k:n—-1];
140 }

141

142 t = —ONE/pvt_vI[k];

143 A_dscal (k+1, n-(k+1), t, af[k]);
144

145 for (j = kpl; j < n; j++) {
146 t = pvt_v[j];

147 A_daxpy(k+1, n-(k+1), t, a[k], a[jl]);
148 }

149 }

150

151 ipvt[n-1] = n-1;

152 }

153

154 void

155 dgesl(double a[N][N], int n, int ipvt[N],
156 {

157 double t;

158 int k, kb, I, nmi;

159 #pragma xmp align af][i] with t(i)

160 #pragma xmp align b[i] with t(i)

161

162 nml = n-1,

163

164 for (k = 0; k< nml; k++) {
165

166 | = ipvt[k];

167 #pragma xmp gmove

168 t = Db[l];

169

170 if (1 1= k) {

171 #pragma xmp gmove

172

b[1] = b[k];

double b[N])

173 #pragma xmp gmove

174 b[k] = t;

175 }

176

177 A_daxpy(k+1, n-(k+1), t, a[k], b);
178

179

180 for (kb = 0; kb < n; kb++) {

181 k = n— (kb+1);

182 #pragma xmp task on t(k)

183 {

184 b[k] = b[k]/a[k][k];

185 t = —b[k];

186 }

187 #pragma xmp bcast t from t(k)
188

189 A_daxpy (0, k, t, a[k], b);
190 }

191 }

192

193 double

194 epslon(double x)

195 {

196 double a, b, c, eps;

197 a = 4.0e0/3.0€e0;

198 eps = ZERO;

199

200 while (eps == ZERO){
201 b = a — ONE;

202 c=b+ b+ b;

203 eps = fabs (eONE);
204 }

205

206 return(epsfabs(x));
207 }

208

209 double buffer[N];

210

211 void

212 dmxpy(int n, double y[N], doublexx, double m[N][N])
213 {

214 int i, j;

215 double temp;

216 #pragma xmp align mf][i] with t(i)
217 #pragma xmp align y[i] with t(i)
218

219 #pragma xmp gmove

220 buffer[:] = x[:];

221

222 #pragma xmp loop on t(i)

223 for (i = 0; i <n; i++) {
224 temp = O;

225 for (] i <n; j++) {

= 0,
226 temp = temp + m[j][i]xbuffer[j];

227 }

228 y[i] = y[i] + temp;
229}

230 }

231

232 void

233 check sol(double a[N][N], int n, double b[N], double x[N])
234 {

235 int i;

236 double norma, normx, residn, resid, eps, temp tempx;
237 #pragma xmp align af{][i] with t(i)

238 #pragma xmp align b[i] with t(i)

239 #pragma xmp align x[i] with t(i)

240

241 #pragma xmp loop on t(i)
242 for (i = 0; i < n; i++) {
243 x[i] = b[il;

244}

245

246 matgen(a, n, b, &orma);
247

248 #pragma xmp loop on t(i)

249 for (i = 0; i < n; i++) {

250 b[i] = —b[i];

251}

252

253 dmxpy(n, b, x, a);

254

255 resid = 0.0;

256 normx = 0.0;

257

258 #pragma xmp loop on t(i) reduction(max:resid , normx)
259 for (i = 0; i < n; i++) {

260 temp.b = bJ[i];

261 temp x = x[i];

262 resid = (resid> fabs(tempb)) ? resid : fabs(temp);
263 normx = (normx> fabs(tempx)) ? normx : fabs(tempx);
264 }

265

266 eps = epslon((double)ONE);

267 residn = resid/(mnormacnormx«eps);

268

269 if(rank == 0) {

270 printf(” norm. resid resid machepn”);
271 printf("%8.1f %16.8€%16.8&n”,

272 residn, resid, eps);

273}

274}

275

276 int

277 main(void)

278 {

279 int i,j;

280 double ops,norma, t0O,tl, dn;

281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

rank
size

xmp.get_ node num ();

= xmp.get num_nodes ();

if(rank == 0)
printf ("Linpack ...\n");

n = N;

dn = N;

ops = (2.0e&(dnxdnxdn))/3.0 + 2.0<(dnxdn);

matgen(a, n, b, &orma);

t0 = xmp_get_second ();
dgefa(a, n, ipvt);

dgesl(a, n, ipvt, b);
tl = xmp_get second ();

if(rank == 0)
printf ("time=%g, %g MFlopsn”,t1-t0,

check sol(a, n, b, x);

if(rank == 0)
printf("end ...\ n");

return O;

}

2) Performance ArchievediVe shows performance evaluation results in Figure 4. The matrix size is 67108864 ((8x1024)

X (8x1024)).

ops/((t1-t0)x1.0e6));

1800
1600
__ 1400
& 1200
=
node(s)| MFlops 5 1000
o
1 319.457 5 800
2 361.099 5
4]640.907 s 80
8 1107.05 400
16 1632.01 200
0

4 5 6 7 8 9 10 11 12 13 14
Number of Nodes

Figure 4. Linpack Performance

E. FFT

The six-step algorithm is used as in MPI version of FT. The one-dimensional vector is accessed as two-dimensional array.
In the two-dimensional array, 1D FFT is performed in each direction. During the 1DFFT on each direction, the matrix
transpose operations are required three times. The matrix transpose operations are implemented by all-to-all communication
of gmove directive and local copy operations. For 1D FFT, FFTE routine (FFT235) is used.

1) Source Code and LOCWe show parallel code of FFT below. The LOC is 217.

« hpccfft.h
The LOC is 23.

#include <stdio .h>
#include <stdlib .h>
#include <malloc.h>
#include <math.h>

#ifdef LONG_IS_64BITS

typedef unsigned long u64int;
typedef long s64lintt;

#else

typedef unsigned long long u64int;
typedef long long s64Intt;

#endif

O© 00N O~ WDNPR

N o =
A WNRERO

typedef double fftwreal;

[EnY
a1

16 typedef struct{

17 fftw_real re, im;

18 } fftw_complex;

19

20 #define cre(c) ((c).re)

21 #define cim(c) ((c).im)

22

23 #define ARR2D(a,i,j,lda) a[(i)+(j}¥(lda)]

24 #define ARR3D(a,i,j,k,ldal,lda2) a[(i)+(ldak)(j)+(k)=*(lda2))]

25 #define ARR4D(a,i,j,k,l,ldal,lda2,Ida3) a[(i)+(ldak{(j)+(lda2)x((k)+(lda3)*(1)))]
26 #define cmul3v(v,vl,v2) \

27 { c_re(v) = c_re(vl)xc_re(v2) — c_im(vl)«xc_im(v2); c_im(v) = c_re(vl)x c_im(v2) + c_im(vl)
28 #define cassgn(d,s){ c_re(d)=c_re(s);cim(d)=c_im(s); }

o fft_xmp.h
The LOC is 16.

#pragma xmp nodes ()

#define N1 (1G1024)

#define N2 (13:1024)

#define N (NkN2)

#define NMAX (N1 > N2 ? N1 : N2)

#pragma xmp template t0(0:((%Q024)x(10«1024))—1)
#pragma xmp template t1(0:(kQ024)-1)
#pragma xmp template t2(0:(kxQ024)-1)

O© 0O NO UL WNPRP

=
o

11

12 #pragma xmp distribute tO(block) onto p
13 #pragma xmp distribute tl(block) onto p
14 #pragma xmp distribute t2(block) onto p

15
16
17
18
19
20
21

O© 0O NO Ul WN PR

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

extern fftw_complex in[N], out[N], tblLww][N];
extern fftw_complex tbl wl1[N1],

#pragma xmp align in[i] with tO(i)
#pragma xmp align out[i] with tO (i)

#pragma xmp align thlwwl[i] with tO(i)

zfft1d-sixstep-xmp.c
The LOC is 104.

#include "hpccfft.h”
#include "fft_xmp.h”

fftw_complex awork[N2][N1];
#pragma xmp align awork[«][i] with t1(i)

void settbl2 (fftw_complex w[N1][N2])

{

int
double pi, px;
#pragma xmp align w[i]k] with t1(i)

i,

pi=4.0«atan (1.0);
px=—2.0«pi/((double)(NkN2));

#pragma xmp loop on t1(i)
for(i = 0; i < N1; i++) {
for(j = 0; j < N2; j++) {

}
}

}

c_re(wlil[j])

tbl_w2[N2], work [N MAX];

cos (pxx((double)(i))«((double

=)(i)))
c_im(w[il[j]) = sin(px*((double)(i))x((double)(j)))

void zfftldO (fftw_complex a[N2][N1],

{

int

fftw_complex ztmpl, ztmp2,ztmp3;
#pragma xmp align a[i]f] with t2(i)
#pragma xmp align b[i]k] with t1(i)
#pragma xmp align ww[i]k] with t1(i)

fftw_complex ww[N1][N2],
fftw_complex xwork, int

i, j;

#pragma xmp gmove
a_work[:][:1 = al:1[:1;

#pragma xmp loop on t1 (i)
for(i = 0; i < N1; i++) {
for(j = 0; j < N2; j++) {

}

}

c_assgn(b[i][j],awork[j][i]);

fftw_complex b[N1][N2],

fftw_complex wi[N1],

ipl[3],

int

ip2 [3])

fftw_complex w2[N2],

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

#pragma xmp loop on t1 (i)
for(i = 0; i < N1; i++)
HPCC fft235(b[i],work ,w2,N2,ip2);

#pragma xmp loop on t1(i)
for(i = 0; i < N1; i++){
for(j = 0; j < N2; j++) {
c_assgn(ztmpl,b[i][j]);
c_assgn (ztmp2 ,ww[i][j]);
c_mul3v(ztmp3, ztmpl, ztmp2);
c_assgn(b[il[j],ztmp3);
}
}

#pragma xmp loop on t1 (i)
for(i = 0; i < N1; i++) {
for(j = 0; j < N2; j++){
c_assgn (awork[j][i],b[i][j]);
}
}

#pragma xmp gmove
al:1[:]1 = a_work[:][:1;

#pragma xmp loop on t2(j)
for(j = 0; j < N2; j++) {
HPCC fft235(a[j],work ,wl1,N1,ipl);
}

#pragma xmp gmove
awork[:][:]1 = al:1[:1;

#pragma xmp loop on t1 (i)
for(i =0; i < N1; i++){
for(j=0; j < N2; j++){

c_assgn(b[i][j],awork[j][i]);
}

¥
}
int
zfftld (fftw_complex a[N], fftw_complex b[N], int iopt,
o

int i;

double dn;

int ipl[3], ip2[3];
#pragma xmp align af[i] with tO(i)
#pragma xmp align b[i] with tO(i)

if (0 == iopt) {
HPCC settbl(tblL.wl, nl);
HPCC_ settbl(tblL. w2, n2);
settbl2 ((fftw_complex *xx)tbl_ww);
return O;

int nl,

int n2)

9 }

100

101 HPCC factor235(nl1, ipl);
102 HPCC factor235(n2, ip2);

103

104 if (1 == iopt){

105 #pragma xmp loop on tO(i)

106 for (i = 0; i < N; ++i) {

107 c_im(a[i]) = —c_im(ali]);
108 }

109 }

110

111 zfft1doO ((fftw_complex *xx)a, (fftw_complex xx)b, (fftw_complex xx)tbl_ww,
112 (fftw_complex x)tbl_wl, (fftw_complex x)tbl_w2, (fftw_complex x)work,
113 ipl, ip2);

114

115 if (1 == iopt) {

116 dn = 1.0 / N;

117 #pragma xmp loop on tO(i)

118 for (i = 0; i < N; ++i) {

119 c_re(b[i]) %= dn;

120 c_im(b[i]) %= —dn;

121 1

122}

123

124 return O;

125 }

« fft_main xmp.c
The LOC is 74.

1 #include "hpccfft.h”

2 #include "fft_xmp.h”

3

4 fftw_complex in[N], out[N], tblLww][N];

5 fftw_complex tbl wl[N1], tbl_w2[N2], work[N MAX];
6

7 double HPL timer_cputime(void);

8

9 int

10 main(void)

11 {

12 int rv, n, failure = 1;

13 double Gflops =-1.0;

14 FILE xoutFile;

15 int dolO = 0;

16 double maxErr, tmpl, tmp2, tmp3, tO, tl1, t2, t3;
17 int i, nl, n2;

18 int rank;

19

20 #ifdef _XMP

21 rank = xmp.get node num ();
22 #else

23 rank = O;

24 #endif

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

dolO = (rank == 0);

outFile = stdout;
srand (time (NULL));

n =
nl
n2

N
N1;
N2;

to —HPL_timer_cput
HPCC bcnrand(0, in
t0 += HPL_timer_cput

tl = —HPL_timer_cput
zfftld(in, out, O,
tl += HPL_timer_cput

t2 = —HPL_timer_cput
zfftld(in, out, —1,
t2 += HPL_timer_cput

t3 = —HPL_timer_cput
zfftld(out, in, +1,
t3 += HPL_timer_cput

HPCC bcnrand(O,

maxErr =
#pragma
for (i
tmpl
tmp2
tmp3
maxErr

0.0;

0; i < N;
cre(in[i]
cim(in[i]
S

maxErr>=

}

#pragma xmp reduction

if (dolO) {
fprintf(
fprintf(
fprintf (
fprintf(
fprintf(
fprintf(

outFile ,
outFile ,
outFile ,
outFile ,
outFile ,
outFile ,

}

if (t2 > 0.0) Gflops

if (dolO)

ime ();
);

ime ();

ime ();
ni, n2);
ime ();

ime ();
ni, n2);
ime ();

ime ();
nl,
ime ();

n2);

out);

xmp loop on tO(i)
i++) {

) — c_re(out[i]);
) — c_im(out[i]);

grt(tmpktmpl + tmpZtmp2);

tmp3 ? maxErr tmp3;

(max: maxErr)

"Vector size: %4n”, n);

"Generation time: %9.3f{n", tO

"Tuning: %9.3f\n", t1);
"Computing: %9.3fn”, t2);
"Inverse FFT: %9.3¥n", t3);

)

"max (| x—x0]): %9.3e\n”, maxErr);

= 1le9 x (5.0 *x n % log(n) /

log(2.0)) [/ t2;

fprintf (outFile, "Single FFT Gflop/s %.6¥n”, Gflops);

return O;

79 }

80

81 #include <sys/time .h

82 #include <sys/resource .k

83

84 #ifdef HPL STDC HEADERS

85 double HPL timer_cputime(void)

86 #else

87 double HPL timer_cputime ()

88 #endif

89 {

90 struct rusage ruse;

91

92 (void) getrusage (RUSAGEELF, &ruse);

93 return((double)(ruse.ruutime.tv_sec) +

94 ((double)(ruse.ruutime.tv_usec) / 1000000.0));
95 }

2) Performance ArchievediVe shows performance evaluation results in Figure 5. The vector size is 104857600 ((10x1024)
X (10x1024)). The main reason of low performance is inefficient implement of gmove communication function.

1.4
/4>

GO
2 ey
node(s)| GFlops S 08 /
(0]
1 0.68225 £ 06 |
2 0.74600 £
4 0.93646 S 04
So.
8 1.03960
16 1.27068 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Nodes

Figure 5. FFT Performance

REFERENCES
[1] XcalableMP, http://www.xcalablemp.org/

[2] CLOC, http://cloc.sourceforge.net/

[3] Coarray Fortran, http://www.co-array.org/

