

 XcalableMP
Directive-based Language eXtension for Scalable and

Performance-aware Parallel Programming
 University of Tsukuba

What's XcalableMP?
Although MPI is a de-facto standard for parallel programming on
distributed memory systems, writing MPI programs is often
time-consuming and complicated process. XcalableMP is a
directive-based language extension which allows users to
develop parallel programs for distributed memory systems easily
and tune the performance by having minimal and simple
notations. So far, there have been a number of parallel
programming languages for distributed memory architectures,
including High Performance Fortran (HPF). However, these
programming models have not been commonly used any more.
On the other hand, OpenMP is widely used on shared memory
architectures including SMP-configured PC clusters or multi-core
CPUs. The most important feature of OpenMP from the
perspective of programmability is to enable parallelization with
simple directives that helps users extend their codes relatively
easily from sequential ones. The target platform of OpenMP is
however limited to shared memory architectures.
XcalableMP Application Program Interface (XcalableMP API) is a
collection of compiler directives, runtime library routines that can
be used to specify distributed-memory parallel programming in C
and Fortran program. This specification provides a model of
parallel programming for distributed memory multiprocessor
systems, and the directives extend the C and Fortran base
languages as to describe distributed memory parallel program,
as in OpenMP.
XcalableMP introduces simple, but effective features to describe
typical scientific applications using a concept similar to OpenMP.
This paradigm features functions for array distribution and work

mapping for loop on parallel processes, which are normally
executed as MPI processes. These features can be coded using
directives similar to OpenMP.
The specification has been being designed by XcalableMP
Specification Working Group which consists of members from
academia and research labs to industries in Japan.
Features of XcalableMP are summarized as follows:
• XcalableMP supports typical parallelization based on the data

parallel paradigm and work mapping under "global view
programming model", and enables parallelizing the original
sequential code using minimal modification with simple
directives, like OpenMP. Many ideas on "global-view"
programming are inherited from HPF (High Performance
Fortran).

• The important design principle of XcalableMP is
"performance-awareness". All actions of communication and
synchronization are taken by directives, different from

automatic parallelizing compilers. The user
should be aware of what happens by
XcalableMP directives in the execution model
on the distributed memory architecture.

• XcalableMP also includes CAF-like PGAS
(Partitioned Global Address Space) feature as
"local view" programming.

• Extention of existing base languages with
directives is useful for rewriting cost and
education cost. XcalableMP APIs are defined
on C and Fortran 95 as a base language.

• For flexibility and extensibility, the execution
model allows to combine with explicit MPI
coding for more complicated and tuned
parallel codes and libraries. For multi-core and
SMP clusters, OpenMP directives can be
combined into XcalableMP for thread
programming inside each node as a hybrid
programming model.(Under discussion)

Current solution for programming clusters?!
int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;

temp_res = 0;
for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
temp_res += array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

}

Only way to program is MPI,
but MPI programming seems
difficult, … we have to
rewrite almost entire program
and it is time-consuming and
hard to debug… mmm

Current solution for programming clusters?!
int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;

temp_res = 0;
for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
temp_res += array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

}

Only way to program is MPI,
but MPI programming seems
difficult, … we have to
rewrite almost entire program
and it is time-consuming and
hard to debug… mmm

www.xcalablemp.org

We need better solutions!!
#pragma xmp template T[10]
#pragma xmp distributed T[block]

int array[10][10];
#pragma xmp aligned array[i][*] to T[i]

main(){
int i, j, res;
res = 0;

#pragma xmp loop on T[i] reduction(+:res)
for(i = 0; i < 10; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code :
incremental parallelization

data distribution

work sharing and data
synchronization

We want better solutions
… to enable step-by-step
parallel programming from
the existing codes, … easy-
to-use and easy-to-tune-
performance … portable …
good for beginners.

We need better solutions!!
#pragma xmp template T[10]
#pragma xmp distributed T[block]

int array[10][10];
#pragma xmp aligned array[i][*] to T[i]

main(){
int i, j, res;
res = 0;

#pragma xmp loop on T[i] reduction(+:res)
for(i = 0; i < 10; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code :
incremental parallelization

data distribution

work sharing and data
synchronization

We want better solutions
… to enable step-by-step
parallel programming from
the existing codes, … easy-
to-use and easy-to-tune-
performance … portable …
good for beginners.

Programming model of XcalableMP
The parallel execution model of XcalableMP is a Single Program
Multiple Data (SPMD) model. As in MPI, all parallel processes in
nodes start their execution from the same main function. When
the thread encounters XcalableMP directives, the
synchronization and communication occurs between nodes. That
is, no synchronization and communications happen without
directives. In this case, the program does duplicated execution of
the same program on local memory in each node. As default,
data declared in the program is allocated in each node, and is
referenced locally by threads executed in the node.
The global-view programming model is useful when, starting
from sequential version of the program; the programmer
parallelizes it in data-parallel model by adding directives
incrementally with minimum modifications. As these directives
can be ignored as a comment by the compilers of base
languages (C and Fortran), an XcalableMP program derived
from a sequential program can preserve the integrity of original
program when it is run sequentially.
The global-view programming model shares major concepts with
HPF. Nodes directive declares a node array to express a set of
nodes. The programmer describes the data distribution of data
shared among the nodes by data distribution directives. To
specify the data distribution, the template is used as a dummy
array distributed on nodes. A distributed array is declared by
aligning the array to the template by align directive.
The work mapping in loop iteration is described by the loop
directive as in OpenMP. Loop construct maps iterations to the
node where referenced data is located. Template is used to

specify the mapping of iteration. By using the same template
used for the data distribution, iterations are assigned to the node
of the data. It should be noted that in XcalableMP the
programmer must control all data reference required
computations done locally by any appropriate directives.
A fragment of code taken from NBP CG (one-dimensional
parallelization) is shown in the box. Shadow directives are used
to declare the shadow region of each array, which can be
synchronized by reflect directive..
In order to describe communication, the gmove construct is a
powerful operation in global-view programming in XcalableMP: It
copies data of a distributed array in global-view. This directive is
followed by the assignment statement of scalar value and array
sections.
In addition to the "global view" programming described above,
XcalableMP also includes CAF-like PGAS (Partitioned Global
Address Space) feature as “local view” programming.
XcalableMP adopts coarray notations as an extension of
languages for local view programming. In case of Fortran as the
base language, most coarray notations are compatible to that of
Coarray Fortran(CAF) expect that the task constructs are used
for task parallelism. In order to use coarray notations in C, we
propose some language extension of the language. A coarray is
declared by the coarray directive in C.
References
[1] H. Murai, T. Araki, Y. Hayashi, K. Suehiro and Y. Seo:

Implementation and Evaluation of HPF/SX V2,
Concurrency and Computation - Practice & Experience,
Vol.14, No. 8-9, Wiley (2002), 603-629.

[2] J. Lee, M. Sato and T. Boku, "OpenMPD: A
Directive-Based Data Parallel Language Extensions for
Distributed Memory Systems", First International Workshop
on Parallel Programming Models and Systems Software
for High-End Computing (P2S2), 2008

This research is carried out as a part of “Seamless and
Highly-productive Parallel Programming Environment for
High-performance computing” project funded by Ministry of
Education, Culture, Sports, Science and Technology,
JAPAN.

XcalableMP Specification Working Group
Objectives and Mission
• Making a draft on XcalableMP parallel language for

“standard” parallel programming.
• To propose the draft to “world-wide” community.
Members
Academia: M. Sato, T. Boku (compiler and system, U.
Tsukuba), K. Nakajima (app. and programming, U. Tokyo), T.
Nanri (system, Kyushu U.), Y. Okabe, M. Yasugi (HPF and
compiler, Kyoto U.)
Research Lab.: M. Yokokawa (RIKEN), H. Sakagami (app.
and HPF, NIFS), Y. Matsuo (app., JAXA), H. Uehara (app.,
JAMSTEC/ES)
Industries: H. Iwashita and K. Hotta (HPF and XPFortran,
Fujitsu), H. Murai and S. Sakon (HPF, NEC), T. Anzaki and
K. Negishi (Hitachi)

#pragma xmp nodes p(*)
#pragma xmp template t(0:N-1)
#pragma xmp distributed t(block) onto p
...
double w[N], p[N], q[N], r[N];
#pragma xmp align [i] with t(i):: p, q, r, w
#pragma xmp shadow [*] :: p
...
/* code fragment from conj_grad in NPB CG */
sum = 0.0;
#pragma xmp loop on t(j) reduction(+:sum)
 for (j = 1; j <= lastcol-firstcol+1; j++) {
 sum = sum + r[j]*r[j];
 }
 rho = sum;
 for (cgit = 1; cgit <= cgitmax; cgit++) {
#pragma xmp reflect p
#pragma xmp loop on t(j)
 for (j = 1; j <= lastrow-firstrow+1; j++) {
 sum = 0.0;
 for (k = rowstr[j]; k <= rowstr[j+1]-1; k++) {
 sum = sum + a[k]*p[colidx[k]];
 }
 w[j] = sum;
 }
#pragma xmp loop on t(j)
 for (j = 1; j <= lastcol-firstcol+1; j++) {
 q[j] = w[j];
 }
 …
 }

