X MP

XcalableMP Implementation and
Performance of NAS Parallel Benchmarks

Mitsuhisa Sato
Masahiro Nakao, Jinpil Lee and Taisuke Boku

University of Tsukuba, Japan

hpcs lab

1gh Performance Computing Systel

What's XcalableMP? X==MP

calableMP

1vi

= A programming model an
= http://www.xcalablemp.org

= XcalableMP Specification Working Group (XMP WG)

= XMP WG is a special interest group, which organized to make a draft on “petascale” parallel
language.

= Started from December 2007, the meeting is held about once in every month.
= Mainly active in Japan, but open for everybody.

= XMP WG Members (the list of initial members)
= Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)

= Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)

= Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi), (many HPF developers!)

= Funding for development

= e-science project : “Seamless and Highly-productive Parallel Programming Environment for High-
performance computing” project funded by MEXT,Japan

= Project PI: Yutaka Ishiakwa, co-Pl: Sato and Nakashima(Kyoto), PO: Prof. Oyanagi
= Project Period: 2008/0ct to 2012/Mar (3.5 years) 2

Agenda X MP

= XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel

Programming

= Concept and model
= directives

= Some examples

= XMP implementation of Nas Parallel Benchmark

= ES, IS, CG (1-D, 2-D)
= Preliminary performance reports

XMP project 3

X MP http://www.xcalablemp.org

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

= Directive-based language extensions for familiar languages F90/C c++)
= To reduce code-rewriting and educational costs.

node0 nodel node2
= “Scalable” for Distributed Memory
Programming Duplicateql execution
= SPMD as a basic execution model I
= A thread starts execution in each node directives

independently (as in MPI) .
= Duplicated execution if no directive specified.
= MIMD for Task parallelism | | l

Comm, sync and work-sharing

= “performance-aware” for explicit
communication and synchronization.
= Work-sharing and communication occurs when directives are encountered

= All actions are taken by directives for being “easy-to-understand” in
performance tuning (different from HPF)

XMP project

Overview of XcalableMP Xm:=MP

= XMP supports typical parallelization based on the data parallel paradigm
and work sharing under "global view*

= An original sequential code can be parallelized with directives, like OpenMP.

= XMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

| User applications

Global view Directives

eSupport common pattern

(communication and work- Array section

sharing) for data parallel in C/C++

programming :

eReduction and scatter/gather chal _”ew
I Communication of sleeve area Directives
o «Like OpenMPD, HPF/JA, XFP (CAF/PGAS)

Interface XMP parallel execution model
- One-sided comm.
Two-sided comm. (MPI) (remote memory access)

XMP proj Parallel platform (hardware+Q0S)

Code Example

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX) data distribution }
#pragma xmp distribute t(block) on p
#pragma xmp align array/[i][*] with t(i

AN

main (1 add to the serial code : incremental parallelization
inti, |, res;
res =0;

#pragma xmp loop on t(i) reduction(+:res)

for(i=0; i <10; i++)
for(j = 0; j < 10; j++){ _ —
array[i][j] = func(, j); work sharing and data synchronization }

res += array/[i][j];

}

}

XMP project

The same code written in MPI X MP

int array[YMAX][XMAX];

main(int argc, char*argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPl_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAXI/size;

[limit = rank * dx;

if(rank !'= (size - 1)) ulimit = llimit + dx;

else ulimit = YMAX;

temp_res =0;
for(i = llimit; i <ulimit; i++)
for(j =0; j < 10; j++){
array[i][j] = func(, j);
temp_res +=array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();
}

XMP

Nodes, templates and data/loop X==MP

= ldea inherited from HPF
Node is an abstraction of processor and memory in distributed memory

environment, declared by node directive. #pragma xmp nodes p(32)
#Hpragma xmp nodes p(*)

Template is used as a dummy array distributed on nodes

#pragma xmp template t(100)
#pragma distribute t(block) onto p Va('/azb'e
s A global data is V1 Align variable @
Ve Loop

directive

aligned to the template Align Loop
directive

i : : directive directive
#Hpragma xmp align array[i][*] with t(i) Align Loop
directive directive

= Loop iteration must also be
T2

aligned to the template
Distribute directive

by On'CIause' Distribute directive
#Hpragma xmp loop on t(i)

nodes

XMP project

Array data distribution X MP

= The following directives specify a data distribution among nodes
#pragma xmp nodes p(*)

#pragma xmp template T(0:15)

#pragma xmp distribute T(block) on p

#pragma xmp align array[i] with T(i)

O O O O

8§ 9 10 11 12 13 14 15

Assign loop iteration
as to compute own data

Reference to assigned to ‘
other nodes may causes

error!! ‘ Communicate data between other nodes

XMP project 9

Parallel Execution of “for” loop X===MP

. L 7 7 #pragma xmp nodes p(*)
m EXecute Tor loop to compute on array #pragma xmp template T(0:15)

#pragma xmp distributed T(block) onto p

#pragma xmp loop on t(i) #pragma)fmp align array[i] with T(i)
for(i=2; i <=10; i++) Data region to be computed
by for loop

o 1 2 3 4 5 6 7/8 9 10 11 12 13 14 15

array[]

Execute “for” loop in parallel with affinity to array distribution by on-clause:
#pragma xmp loop on t(i)

nodeO

nodel

node?2

node3 // — T

distributed array

XMP project 10

Data synchronization of array X.==MP
(shadow)

= Exchange data only on “shadow” (sleeve) region

o If neighbor data is required to communicate, then only sleeve
area can be considered.

o example:b[i] = array[i-1] + array[i+1]
#pragma xmp align arrayl[i] with t(i)
9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8
array(] [HEEN

#pragma xmp shadow array[1:1]

node2 . .
node3 ,

Programmer specifies sleeve region explicitly |J

Directive : #pragma xmp reflect array
XMP project 11

Data synchronization of array (full shadow)X-==r=MP

= Full shadow specifies whole data replicated in all nodes
s #pragma xmp shadow array[*]

= reflect operation to distribute data to every nodes

o #pragma reflect array
o Execute communication to get data assigned to other nodes

o Most easy way to synchronize . But, communication is expensive!

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Now, we can access correct data by

XMP project local access ! 12

gmove directive X MP

The "gmove" construct copies data of distributed arrays in
global-view.

= When no option is specified, the copy operation is performed collectively
by all nodes in the executing node set.

= If an "in" or "out" clause is specified, the copy operation should be done
by one-side communication ("get" and "put") for remote memory

aCCess.
1$xmp nodes p(*) A B

1$xmp template t(N) alnlnln alnlnln
I1$xmp distribute t(block) to p olololo olololo
real A(N,N),B(N,N),C(N,N) d|d|d]d d|d|d]d
I$xmp align A(i,*), B(i,*),C(*,1) with t(i) elele|e elele|e
112 (3|4 112|3]|4
A(1) = B(20) // i1t may cause error
1$xmp gmove C
A(1:N-2,:) = B(2:N-1,:) // shift operation
1$xmp gmove nodel
C(:,:) = A(:,2) // all-to-all node2
1$xmp gmove out node3
X(1:10) = B(1:10,1) // done by put operation don
node

XMP project 13

XcalableMP Global view directives

= Execution only master node
= #pragma xmp block on master

s Broadcast from master node
= #pragma xmp bcast (var)

= Barrier/Reduction
s #Hpragma xmp reduction (op: var)
= #pragma xmp barrier

= Task parallelism
s #Hpragma xmp task on node-set

XMP project

MP

14

XcalableMP Local view directives X MP

= XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

= The basic execution model of XcalableMP is SPMD
= Each node executes the program independently on local data if no directive

= We adopt Co-Array as our PGAS feature.

= In C language, we propose array section construct.
= Can be useful to optimize the communication

= Support alias Global view to Local view

Array section in C Co-array notation in C
int A[10]: int A[10], B[10];
int B[5]; #pragma xmp coarray [*]: A, B

A[5:9] = B[0:4]; A[:] = B[:]:[10]; // broadcast

XMP project 15

Experience with NPB in Xcalablemp Xs==MP

= The following three benchmarks are selected for the XMP
benchmark
= EP

= IS
= with a histogram (buckets)
= without a histogram (buckets)

= CG
= one-dimensional parallelization
= two-dimensional parallelization

s Check

= Programmability/Expressiveness (How to write programs)
= Performance (How fast the written programs run)

NPB-EP X==MP

#pragma xmp nodes p(*)
#pragma xmp template t(1:NN)
#pragma xmp distribute t(brock) onto p

Parallelized by

#pragma xmp loop on t(k)
for(k=1; k<=NN; k++){

[* pseudorandom number generation™/

“for statement”

NPB-IS without a histogram ~ X<m=MP

I I I N itz array

|‘ “” ” m |h H | “N Count the number of keys

having the same value

Accumulate the counted
number at each node and sum
the accumulated number
using the reduction operation

NPB-IS without a histogram ~ X<m=MP

key arrayl] is a distributed array.
Prv_buff1 is local

#pragma xmp loop on t(i)
for(i=0; i<NUM_KEYS; i++){ Count the number
key_buff2[i] = key_arrayf[i; of keys having

prv_buff1[key buff2[i]]++; the same value

#pragma xmp reduction(+:prv_buff1) m

NPB-IS with a histogram X==eMP

I I I N itz array

=
|._I_I_ “_I._ |.._|_ l_l_l_l_ Create a histogram
=

I I N R Exchange the keys
"\ / \XZ N (local view)

If the value of the key is small,
the key is moved to left node.

NPB-IS with a histogram X==eMP

key arrayl] is distributed array.

#pragma xmp coarray key buff2 declare coarray

#pragma xmp loop on (i)
for(i=0; i<NUM_KEYS; i++) create a histogram
bucket_size[key array[i] >> shift]++;
communication
for(i=0;i<NUM_PROCS:;i++) with coarray
key buff2[a[i]:b[i]]:[i] = key_buff1[c[i]:d[i]];

Copy the range from c[i] to d[i] of key buf2 to
the range aji] to b[i] of key buff2 in proc [i]
(equivalent to MPI_allgather v)

Implementation of NPB-CG X MP

two-dimensional How do arrays are
sparse matrix C
distributed to each node ?

< Conjugate Gradient

l

one-dimensional
varalielization NN I IR B template(1:N)

template(1:N, 1:N)

NPB-CG One-Dimensional Parallelization

Nnll all
MLl

MLl

and

Al

M1 are dictribiited arrav
I.J GAI W NAIJULIIN GW/NA GAIT T WA

#pragma xmp template t(0:N-1)
#pragma xmp distribute t(block) on proc
#pragma xmp align p[i],q[i],w[i] with t(i)
#pragma xmp shadow p[*]

for(....){
#pragma xmp reflect p
#pragma xmp loop on t(j)
for (j = 1; j <= lastrow-firstrow+1; j++) {
sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++) {
sum = sum + a[k]*plcolidx[K]];
}
w[j] = sum;
}
#pragma xmp loop on t(j)
for (j = 1; j <= lastrow-firstrow+1; j++)
qli] = wiil;
... update pwithgand w
}

declare
full shadow

Synchronization

by reflect

X MP

= P[] Is declared with full shadow

Full shadow
Ji Ji
TN
R] R

reflect

XMP project 24

2D-Parallelization of NPB-CG X MP
(data distribution)

Declaration of replicated Arrays col al

template t()

#pragma xmp nodes on n(NPCOLS,NPROWS) row[

#pragma xmp template t(0:na-1,0:na-1)
#pragma xmp distribute t(BLOCK,BLOCK) on n
double x[na], z[na], p[na],

wi]

g[na], r[na], w[na];
#pragma xmp align [i] with t(i,*):: x,z,p,q,r
#pragma xmp align [i] with t(*,i):: w

w is replicated at the first dimension of t, and
distributed for the second dimension in block
distribution.

Matrix data a[], rowstr[], colidx[]
1. Declared as local arrays
2. Arranged as to access each element locally.

NPB-CG Two-Dimensional Parallelization XsaTaBTeMP

~lata / 4 f\ NI

-

#;ra;ma xm; dlst:bute t(block bIock}) onp p[l, all, and w[] are
#pragma xmp align A[j][i] to t(i.j) distributed arrays.
#pragma xmp align p[i] to t(i,*)
#pragma xmp align wlj] to t(*,)) _,\

p[i], q[i] with t(i, *)
for(){ w[i] with t(*, i)

#pragma xmp loop on t(*, j)
for (j = 1; j <= lastrow-firstrow+1; j++) {
sum = 0.0;
for (k = rowstr(j]; k < rowstr[j+1]; k++) {
sum = sum + a[k]*p[colidx[K]];

}

wlj] = sum; _ :
} . Reduction operation
#pragma xmp reduction(+:w) on p(*, :) on replicated array

#pragma xmp gmove

Akl = wL:T copy arrays with
. Update p with q . different distributions

XcmeMP

wl] with t(*,)

t(i,))
a[l[]

o[i] with t(i,*)

=N

<_} reduction

reduction(+:w) on p(*, :)

t ==l

gmove q[:] = w[:];
XMP project transpose LLLiL) 27

Performance Evaluation X MP

T2K Tsukuba System PC Cluster

e

AMD Opteron Quad 2.3GHz Intel Core2 Quad 3GHz

Infiniband DDR 4rails (8 GB/s) Gigabit Ethernet

Performance Results : NPB-EP X7 MP

T2K Tsukuba System PC Cluster
300 500

o 200 m XMP
E m MPI
o
= 100 ‘

0 | el | ‘ | | el : ‘ | ‘ | |

1 2 4 8 16 1 2 4 8 16
Number of Node Number of Node

The difference in performance at 1 node is because the
performance of the C compiler is poor than that of Fortran.

Evaluation Results : NPB-IS

T2K Tsukuba System

800 180

m XMP(without histgram)
600 I "@xMP(with histgram)
= MPI

1) A (o] 1
L V4 b (0] 10

Number of Node

PC Cluster

o] Y| (0] 12
V4 “~+ (0] 10

Number of Node

The results indicate that the performance of
XMP with a histogram is comparable to that of MPI.

Performance Results : NPB-CG X7 MP

T2K Tsukuba System PC Cluster
4000 2500
2000 m XMP(1d) 2000
o = XMP(2d) @ 1e00
Q. 2000 m MPI 8—
= < 1000
1000 £00 -
0 - 0 -
1 2 4 8 16 1 2 4 8 16
Number of Node Number of Node

The results for CG indicate that the performance of
2D. parallelization in XMP is comparable to that of MPI.

http://www.xcalablemp.org

Short Summary

= Preliminary performance report NPB results
= We found XMP can be a good solution to describe these benchmarks.
= Performance looks reasonable, but much performance tuning is required
= More experience is needed in real apps.

= XcalableMP project: status and schedule
= A draft of XcalableMP specification 0.7
» http://www.xcalablemp.org/xmp-spec-0.7.pdf
= 3Q/10 beta release, C language version compiler (at SC10)

cr1nN
L1V

5
)

'aYaY hllﬁ
compie

= Issues under discussion
= Multicores (SMP) Cluster and Hybrid programming with OpenMP
= Parallel 10
= Extension to GPGPU, Manycore, Fault tolerant?, Others ...

XMP project 32

Thank you for your attention!!!

Q & A?

http.//www.xcalablemp.org/

Acknowledgements:
We would like to thank XMP-WG members for
Valuable discussions and comments

XMP project 33

