
XcalableMP Implementation and 
Performance of NAS Parallel BenchmarksPerformance of NAS Parallel Benchmarks

Mitsuhisa Sato
Masahiro Nakao, Jinpil Lee and Taisuke Boku

University of Tsukuba, Japan



What’s XcalableMP?
 XcalableMP (XMP for short) is: XcalableMP (XMP for short) is:  

 A programming model and language for distributed memory , proposed by XMP WG
 http://www.xcalablemp.org

 XcalableMP Specification Working Group (XMP WG)
 XMP WG is a special interest group, which organized to make a draft on “petascale” parallel 

language.language.
 Started from December 2007,  the meeting is held about once in every month.

 Mainly active in Japan, but open for everybody.

 XMP WG Members (the list of initial members)
 Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and 

programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
 Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo 

(app., JAXA), Uehara (app., JAMSTEC/ES)
 Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC), 

A ki d N i hi (Hit hi) ( HPF d l !)Anzaki and Negishi (Hitachi),  (many HPF developers!)

 Funding for development
 e-science project : “Seamless and Highly-productive Parallel Programming Environment for High-

2

 e science project : Seamless and Highly productive Parallel Programming Environment for High
performance computing” project funded by MEXT,Japan

 Project PI: Yutaka Ishiakwa, co-PI: Sato and Nakashima(Kyoto), PO: Prof. Oyanagi
 Project Period: 2008/Oct  to 2012/Mar (3.5 years)



Agenda

 XcalableMP : directive-based language eXtension 
for Scalable and performance-aware Parallelfor Scalable and performance aware Parallel 
Programming
 Concept and modelp
 directives
 Some examples

 XMP implementation of Nas Parallel Benchmark
ES IS CG (1 D 2 D) ES, IS, CG (1-D, 2-D)

 Preliminary performance reports

3XMP project



http://www.xcalablemp.org

XcalableMP : directive-based language eXtension 
for Scalable and performance-aware Parallel Programmingp g g

node0 node1 node2

 Directive-based language extensions for familiar languages F90/C (C++)

 To reduce code-rewriting and educational costs.

 “Scalable” for Distributed Memory 
Programming Duplicated execution

node0 node1 node2

 SPMD as a basic execution model 
 A thread starts execution in each node 

independently (as in MPI) . 
directives

Comm, sync and work-sharing
 Duplicated execution if no directive specified. 
 MIMD for Task parallelism

Comm, sync and work sharing

f f li it “performance-aware” for explicit 
communication and synchronization. 
 Work-sharing and communication occurs when directives are encountered

4XMP project

 All actions are taken by directives for being “easy-to-understand” in 
performance tuning (different from HPF)



Overview of XcalableMP
XMP t t i l ll li ti b d th d t ll l di XMP supports typical parallelization based on the data parallel paradigm
and work sharing under "global view“
 An original sequential code can be parallelized with directives, like OpenMP.g q p p

 XMP also includes CAF-like PGAS (Partitioned Global Address Space) 
feature as "local view" programming.

Gl b l i Di i

User applications

Global view Directives

Array section
in C/C++

•Support common pattern 
(communication and work-
sharing) for data parallel

Local view
Directives

(CAF/PGAS)

in C/C++

XMP 
runtime

sharing)  for data parallel 
programming
•Reduction and scatter/gather
•Communication of sleeve area
•Like OpenMPD HPF/JA XFP

T id d (MPI) One-sided comm

(CAF/PGAS)MPI 
Interface

libraries

XMP parallel execution model

•Like OpenMPD, HPF/JA, XFP

5XMP project

Two-sided comm. (MPI) One-sided comm.
(remote memory access)

Parallel platform (hardware+OS)



Code Examplep

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p

data distribution
p g p ( ) p

#pragma xmp align array[i][*] with t(i)

main(){ add to the serial code : incremental parallelization(){
int i, j, res;
res = 0;

add to the serial code : incremental parallelization

#pragma xmp loop on t(i)  reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

work sharing and data synchronizationarray[i][j] = func(i, j);
res += array[i][j];

}
}

work sharing and data synchronization

6XMP project

}



The same code written in MPI
int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp res, dx,llimit,ulimit,size,rank;int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI C i (MPI COMM WORLD & i )MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;if(rank !  (size 1)) ulimit  llimit  dx;
else ulimit = YMAX;

temp_res = 0;
f (i lli it i li it i )for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
temp res += array[i][j];temp_res  array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI Fi li ()

7XMP project

MPI_Finalize();
}



Nodes, templates and data/loop 
distributionsdistributions

 Idea inherited from HPF
 Node is an abstraction of processor and memory in distributed memory p y y

environment, declared by node directive.

 Template is used as a dummy array distributed on nodes

#pragma xmp nodes p(32)
#pragma xmp nodes p(*)

 Template is used as a dummy array distributed on nodes

i bl

variable
V2

loop
L1 loop

L2

#pragma xmp template t(100)
#pragma distribute t(block) onto p

 A global data is 
aligned to the template

variable
V1

Align
directive

Loop
di ti

variable
V3

loop
L3

Align
directive Loop

directive

 Loop iteration must also be template
T1

directive directive

template
T2

Align
directive

Loop
directive

directive
#pragma xmp align array[i][*] with t(i)

aligned to the template 
by on-clause. Distribute directive

T2

Distribute directive
#pragma xmp loop on t(i)

8XMP project

nodes
P



Array data distribution
Th f ll i di ti if d t di t ib ti d The following directives specify a data distribution among nodes
 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node0

array[]

node1

ode0

node2

node3

Reference to assigned to 
other nodes may causes

Assign loop iteration 
as to compute own data

9XMP project

other nodes may causes 
error!! Communicate data between other nodes



Parallel Execution of “for” loop
E t f l t t

#pragma xmp nodes p(*)
 Execute for loop to compute on array 

D t i t b t d
#pragma xmp loop on t(i)

#pragma xmp template T(0:15)
#pragma xmp distributed T(block) onto p
#pragma xmp align array[i] with T(i)

Data region to be computed 
by for loop

for(i=2; i <=10; i++)

array[]

Execute “for” loop in parallel with affinity to array distribution by on-clause：

node0

#pragma xmp loop on t(i)

node1

node2ode

node3

10XMP project
distributed array



Data synchronization of array 
(shadow)

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve 

area can be consideredarea can be considered.
 example：b[i] = array[i-1] + array[i+1]

#pragma xmp align array[i] with t(i)

array[]

# h d [1 1]

node0

#pragma xmp shadow array[1:1]

node1

node2node2

node3

11XMP project

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array



Data synchronization of array (full shadow)
F ll h d ifi h l d t li t d i ll d Full shadow specifies whole data replicated in all nodes
 #pragma xmp shadow array[*]

 reflect operation to distribute data to every nodesp y
 #pragma reflect array
 Execute communication to get data assigned to other nodes
 Most easy way to synchronize → But communication is expensive! Most easy way to synchronize

array[]

→ But, communication is expensive!

node0

node1

node2

node3

12XMP project
Now, we can access correct data by 

local access !!



gmove directive
 The "gmove" construct copies data of distributed arrays in 

global-view. 
When no option is specified the copy operation is performed collectively When no option is specified, the copy operation is performed collectively
by all nodes in the executing node set. 

 If an "in" or "out" clause is specified, the copy operation should be done 
by one-side communication ("get" and "put")  for remote memory 
access. 

!$xmp nodes p(*) A Bp p
!$xmp template t(N)
!$xmp distribute t(block) to p
real A(N,N),B(N,N),C(N,N)
!$xmp align A(i *) B(i *) C(* i) with t(i)

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e!$xmp align A(i,*), B(i,*),C(*,i) with t(i)

A(1) = B(20)  // it may cause error
!$xmp gmove

e
1

e
2

e
3

e
4

e
1

e
2

e
3

e
4

C
A(1:N-2,:) = B(2:N-1,:) // shift operation

!$xmp gmove
C(:,:) = A(:,:) //  all-to-all

!$xmp gmove out

node1

node2

C

13XMP project

!$xmp gmove out
X(1:10) = B(1:10,1) // done by put operation

node3

node4



XcalableMP Global view directives

 Execution only master node
 #pragma xmp block on master

 Broadcast from master node
 #pragma xmp bcast (var) #pragma xmp bcast (var)

 Barrier/Reduction
 #pragma xmp reduction (op: var)
 #pragma xmp barrier

 Task parallelism
 #pragma xmp task on node-set

14XMP project



XcalableMP Local view directives
 XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space) 

feature as "local view" programming. 
 The basic execution model of XcalableMP is SPMD

 Each node executes the program independently on local data if no directive

 We adopt Co-Array as our PGAS feature.

 In C language, we propose array section construct.
 Can be useful to optimize the communication

 Support alias Global view to Local view

int A[10], B[10];int A[10]:

Array section in C Co-array notation in C

#pragma xmp coarray [*]: A, B
…
A[:] = B[:]:[10]; // broadcast

int B[5];

A[5:9] = B[0:4];

15XMP project

A[:]  B[:]:[10]; // broadcast[ ] [ ];



Experience with NPB in XcalableMP

 The following three benchmarks are selected for the XMP 
benchmark
 EP
 IS

with a histogram (buckets) with a histogram (buckets)
 without a histogram (buckets)

 CG
 one-dimensional parallelization
 two-dimensional parallelization

 Check
 Programmability/Expressiveness (How to write programs)og a ab y/ p ess e ess ( o o e p og a s)
 Performance (How fast the written programs run)



NPB-EP

#pragma xmp nodes p(*)
#pragma xmp template t(1:NN)
#pragma xmp distribute t(brock) onto p
… Parallelized by#pragma xmp loop on t(k)
for(k=1; k<=NN; k++){

Parallelized by 
“for statement”

/* pseudorandom number generation*/

}



NPB-IS without a histogram

2
51 5

7
61 3

0

Initialize array

3 4 9704 2

Initialize array

Count the number of keys 
having the same value

Accumulate the countedAccumulate the counted 
number at each node and sum 
the accumulated number 
using the reduction operation



NPB-IS without a histogram
k [] i di t ib t dkey_array[] is a distributed array.

Prv_buff1 is local 

#pragma xmp loop on t(i)
for( i=0; i<NUM_KEYS; i++ ){ Count the number 

f k h ikey_buff2[i] = key_array[i];
prv_buff1[key_buff2[i]]++;

}

of keys having 
the same value

}

for( i=0; i<MAX KEY 1; i++ )for( i=0; i<MAX_KEY-1; i++ )
prv_buff1[i+1] += prv_buff1[i]; accumulate

#pragma xmp reduction(+:prv_buff1) reduction



NPB-IS with a histogram

2
51 5

7
61 3

03 4 9704 2

Initialize arrayInitialize array

Create a histogram

Exchange the keysc a ge t e eys
(local view) 

If the value of the key is small, 
the key is moved to left node.



NPB-IS with a histogram

key_array[] is distributed array.

#pragma xmp coarray key_buff2
…
# l t(i)

declare coarray

#pragma xmp loop on t(i)
for(i=0; i<NUM_KEYS; i++)

bucket size[key array[i] >> shift]++;
create a histogram

bucket_size[key_array[i] >> shift]++;
…
for(i=0;i<NUM_PROCS;i++)

communication
with coarray

key_buff2[a[i]:b[i]]:[i] = key_buff1[c[i]:d[i]];

C th f [i] t d[i] f k b f2 tCopy the range from c[i] to d[i] of key_buf2 to 
the range a[i] to b[i] of key_buff2 in proc [i]

( i l t t MPI ll th )(equivalent to MPI_allgather_v)



Implementation of NPB-CG

two-dimensional 
sparse matrix

How do arrays are 
sparse matrix

y
distributed to each node ?

a[ ] Conjugate Gradient

two-dimensional 
parallelization template(1:N, 1:N)

one-dimensional 
template(1:N)parallelization template(1:N)



NPB-CG One-Dimensional Parallelization
p[] q[] and w[] are distributed arrays

#pragma xmp template t(0:N-1) 
#pragma xmp distribute t(block) on proc
# li [i] [i] [i] ith t(i)

p[], q[], and w[] are distributed arrays.

d l#pragma xmp align p[i],q[i],w[i]  with t(i)
#pragma xmp shadow p[*]
…
for( ){

declare 
full shadow

for( ….){
#pragma xmp reflect p
#pragma xmp loop on t(j)
for (j = 1; j <= lastrow firstrow+1; j++) {

Synchronization
by reflectfor (j = 1; j <= lastrow-firstrow+1; j++) {

sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++) { 

sum = sum + a[k]*p[colidx[k]];

y

sum  sum + a[k] p[colidx[k]];    
}
w[j] = sum;

}}
#pragma xmp loop on t(j)
for (j = 1; j <= lastrow-firstrow+1; j++) 

q[j] = w[j];q[j] [j];
… update p with q and w ….
}



 P[] is declared with full shadow Full shadow
[]a[] p[] p[]w[]

×

reflect

24XMP project



2D-Parallelization of NPB-CG
(data distribution)

 Declaration of replicated Arrays q[]
colp y

#pragma xmp nodes on n(NPCOLS,NPROWS)
#pragma xmp template t(0:na-1,0:na-1)
#pragma xmp distribute t(BLOCK BLOCK) on n

p(1,*) p(2,*) p(3,*) p(4,*)

q[]

1)

row

#pragma xmp distribute t(BLOCK,BLOCK) on n

double x[na], z[na], p[na],
q[na], r[na], w[na]; p(1 2) p(2 2) p(3 2) p(4 2)

p(1,1) p(2,1) p(3,1) p(4,1)

p(
*,

1
*,

2)q[ ], [ ], [ ];

#pragma xmp align [i] with t(i,*):: x,z,p,q,r
#pragma xmp align [i] with t(*,i):: w p(1,3) p(2,3) p(3,3) p(4,3)

p(1,2) p(2,2) p(3,2) p(4,2)

w[]

p(
*

p(
*,

3)

w is replicated at the first dimension of t, and 
distributed for the second dimension in block 
distribution.

p(1,4) n(2,4) p(3,4) p(4,4)

p
p(

*,
4)

Matrix data a[], rowstr[], colidx[]
1. Declared as local arrays

template t()

2. Arranged as to access each element locally.



#pragma xmp template t(0:N 1 0:N 1)

NPB-CG Two-Dimensional Parallelization
#pragma xmp template t(0:N-1,0:N-1) 
#pragma xmp distribute t(block, block) on p
#pragma xmp align A[j][i] to t(i,j)
#pragma xmp align p[i] to t(i *)

p[], q[], and w[] are 
distributed arrays.

#pragma xmp align p[i] to t(i, )
#pragma xmp align w[j] to t(*,j)
….
for(){

p[i], q[i] with t(i, *)
w[i] with t(* i)for(){

…
#pragma xmp loop on t(*, j)
for (j = 1; j <= lastrow-firstrow+1; j++) {

w[i] with t( , i)

(j ; j ; j ) {
sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++) {

sum = sum + a[k]*p[colidx[k]];    
}
w[j] = sum;

} Reduction operation
li t d#pragma xmp reduction(+:w) on p(*, :)

#pragma xmp gmove
q[:] = w[:]; copy arrays with 

on replicated array

….
….. Update p with q ….
}

py y
different distributions



w[j] with t(*,j)

a[][] p[i] with t(i,*)

[j] ( ,j)
t（i,j)
a[][]

i

×

reduction(+:w) on p(*, :)

reduction
j

27XMP project

gmove q[:] = w[:];
transpose



Performance Evaluation

PC ClusterT2K Tsukuba Systemy

AMD Opteron Quad 2.3GHz Intel Core2 Quad 3GHz

Infiniband DDR 4rails (8GB/s) Gigabit Ethernet



Performance Results : NPB-EP

PC ClusterT2K Tsukuba System

200

300

s XMP
300

400

500

100

200

M
op

/s MPI

100

200

300

M
op

/s

0

1 2 4 8 16

0

100

1 2 4 8 16
Number of Node Number of Node

The difference in performance at 1 node is because the  
performance of the C compiler is poor than that of Fortran.



Evaluation Results : NPB-IS

800 180

PC ClusterT2K Tsukuba System

600

800

s

XMP(without histgram)
XMP(with histgram)
MPI

120

180

s

200

400

M
op

/s MPI

60M
op

/s

0

200

1 2 4 8 16

0

1 2 4 8 161 2 4 8 16
Number of Node

1 2 4 8 16
Number of Node

The results indicate that the performance of 
XMP with a histogram is comparable to that of MPI.



Performance Results : NPB-CG

2500

PC ClusterT2K Tsukuba System

3000

4000

/s

XMP(1d)
XMP(2d) 1500

2000

2500

/s

1000

2000

M
op

/ MPI

500

1000

1500

M
op

/

0

1 2 4 8 16
Number of Node

0

500

1 2 4 8 16
N b f N dNumber of Node Number of Node

The results for CG indicate that the performance ofThe results for CG indicate that the performance of 
2D. parallelization in XMP is comparable to that of MPI.



Short Summary http://www.xcalablemp.org

 Preliminary performance report  NPB results
 We found XMP can be a good solution to describe these benchmarks.

http://www.xcalablemp.org

g
 Performance looks reasonable, but much performance tuning is required 
 More experience is needed in real apps.

 XcalableMP project:  status and schedule
 A draft of XcalableMP specification 0.7

 http://www.xcalablemp.org/xmp-spec-0.7.pdf
 3Q/10 beta release, C language version compiler (at SC10)

Fortran version compiler after SC10 Fortran version compiler after SC10

 Issues under discussion
 Multicores (SMP) Cluster and Hybrid programming with OpenMP
 Parallel IO
 Extension to GPGPU Manycore Fault tolerant? Others

32XMP project

 Extension to GPGPU, Manycore, Fault tolerant?, Others …



Thank you for your attention!!!Thank you for your attention!!!

Q & A?Q & A?

http://www.xcalablemp.org/http://www.xcalablemp.org/

Acknowledgements:
W ld lik t th k XMP WG b fWe would like to thank XMP-WG members for 
Valuable discussions and comments

33XMP project


