
Programming with CAF is very similar to
MPI, in that it provides primitive elements
for parallel programming. Since all commu-
nications are clear to the users, perfor-
mance tuning can easily be done. Since
CAF does not provide global array indices
for the entire data space, the user can only
use local array indices in the communica-
tion statement.

XcalableMP is being designed based on
the experiences of HPF, Fujitsu XPF (VPP
Fortran) and OpenMPD.

Acknowledgement
This research is carried out as a part of
“Seamless and Highly-productive Parallel
Programming Environment for High-
performance computing” project funded by
Ministry of Education, Culture, Sports, Sci-
ence and Technology, JAPAN.

Programming Model
All variables except those specified by
XcalableMP directives as a distributed
object are private and cannot be directly
referenced from other processes.

Distributed array is defined by aligned
directive to align the object to the template
distributed onto nodes. Shadow directives
are used to declare the shadow region of
each array, which can be synchronized by
reflect directive.

The work sharing in loop iteration is
described by the loop directive as in
OpenMP. For work sharing in a loop, each
iteration must be assigned by on clause so
that each node refers to a partial region of
the array to be assigned to that process.
The programmer can specify the reduction
operation on the variable by reduction
clause. In XcalableMP, the user is respon-
sible for describing the necessary directives
for loop parallelization and data distribution.

A fragment of code taken from Laplace
solver using simple Jacobi iteration is
shown in the box. The Laplace solver is an
example to use shadow and reflect direc-
tives which communicates and synchronize
the overlapped regions.

#pragma xmp nodes p(YProc, XProc)
#pragma xmp template t(0:YSIZE-1, 0:XSIZE-1)
#pragma xmp distribute t(block, block) onto p
#pragma xmp align u[y][x] with t(x, y)
#pragma xmp align uu[y][x] with t(x, y)
#pragma xmp shadow uu[1:1][1:1]

for(k = 0; k < niter; k++){
#pragma xmp loop (y, x) on t(x, y) // old <- new
 for(y = 1; y < YSIZE-1; y++)
 for(x = 1; x < XSIZE-1; x++)
 uu[y][x] = u[y][x];

#pragma xmp reflect uu // synchronization

#pragma xmp loop (y, x) on t(x, y) // update
 for(y = 1; y < YSIZE-1; y++)
 for(x = 1; x < XSIZE-1; x++)
 u[y][x] = (uu[y-1][x] + uu[y+1][x] +
 uu[y][x-1] + uu[y][x+1])/4.0;
} // end of iteration

・・・

Reference
[1] Jinpil Lee and Mitsuhisa Sato, “Implementation
and Perfor-mance Evaluation of XcalableMP“, A
Parallel Programming Language for Distributed
Memory Systems, 39th Annual International Con-
ference on Parallel Processing (2010)
[2] Masahiro Nakao, Jinpil Lee, Taisuke Boku,
Mitsuhisa Sato. “XcalableMP Implementation and
Performance of NAS Parallel Benchmarks”, Fourth
Conference on Partitioned Global Address Space
Programming Model (PGAS10), NewYork, USA,
Oct., 2010.

XcalableMP is now under design by
XcalableMP specification WG. If you
are interested in XcalableMP activity,
JOIN US!!! Please contact to M. Sato
 (msato@cs.tsukuba.ac.jp)

