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The IS benchmark tests a sorting operation 
that is important in particle method codes. IS 
is based on the “bucket sort” algorithm to sort 
large arrays of integers.

#pragma xmp coarray key_buff2
…
#pragma xmp loop on t(i)
for(i=0; i<NUM_KEYS; i++)
  bucket_size[key_array[i] >> shift]++;
…
for(i=0;i<NUM_PROCS;i++)
  key_buff2[a[i]:b[i]]:[i] = key_buff1[c[i]:d[i]];

First line is to declare coarray for local view 
programming. Next “loop” directive and “for 
statement” are to create a histogram which is 
used by the sort. The array key_array[] is a 
distributed array. Last “for statement” is to 
exchange the keys at each node with using 
coarray. Array a[], b[], c[] and d[] are 
information of send points and receive points 
of each node.

Conjugate Gradient 
In the CG benchmark, the conjugate gradient 
method is used to compute an approximation 
to the smallest eigenvalue of a large, sparse, 
symmetric positive definite matrix. 
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The results indicate that the performance of 
XcalableMP is comparable to that of MPI.
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#pragma xmp distribute(block,block) on pros
…
#pragma xmp loop on t(*,j)
for (j=1; j<=lastrow-firstrow+1; j++) {
  sum = 0.0;
  for (k=rowstr[j]; k<rowstr[j+1]; k++) {
    sum = sum + a[k]*p[colidx[k]];    
  }
  w[j] = sum;
}
#pragma xmp reduction(+:w) on p(*,:)

#pragma xmp gmove
q[:] = w[:];

Integer Sort

In order to investigate the performance of 
parallel programs written in XcalableMP, we 
have implemented NAS Parallel Benchmarks, 
the Integer Sort (IS) benchmark and the 
Conjugate Gradient (CG) benchmark.

Two-dimensional template is declared in first 
line and one-dimensional working arrays(p[], 
q[], w[]) are aligned to one dimension of the 
template. Index arrays(rowstr[], colidx[]) are 
calculated to refer the array a[] before entering 
the loop in each node. This operation enables 
the nested loop statements to be calculated 
which causes an equivalent processing with 
the MPI version of CG. The “gmove” directive 
copies all elements of array w[] to array q[] 
with different distributions.
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