
Center for Computational Sciences, University of Tsukuba, Japan

The IS benchmark tests a sorting operation
that is important in particle method codes. IS
is based on the “bucket sort” algorithm to sort
large arrays of integers.

#pragma xmp coarray key_buff2
…
#pragma xmp loop on t(i)
for(i=0; i<NUM_KEYS; i++)
 bucket_size[key_array[i] >> shift]++;
…
for(i=0;i<NUM_PROCS;i++)
 key_buff2[a[i]:b[i]]:[i] = key_buff1[c[i]:d[i]];

First line is to declare coarray for local view
programming. Next “loop” directive and “for
statement” are to create a histogram which is
used by the sort. The array key_array[] is a
distributed array. Last “for statement” is to
exchange the keys at each node with using
coarray. Array a[], b[], c[] and d[] are
information of send points and receive points
of each node.

Conjugate Gradient
In the CG benchmark, the conjugate gradient
method is used to compute an approximation
to the smallest eigenvalue of a large, sparse,
symmetric positive definite matrix.

Performance Results
PC Cluster T2K Tsukuba

CPU

Network

Intel Core2 Quad
CPU Q9650 3.0GHz

AMD Opteron Quad
Core 8000 series
2.3GHz
Infiniband DDR
(4 rails)Gigabit Ethernet

PC Cluster T2K Tsukuba

Conjugate Gradient

The results indicate that the performance of
XcalableMP is comparable to that of MPI.

1 2 4 8 16
Number of Node

M
op
/s

0

50

100

150

Number of Node
1 2 4 8 16

0

240

480

720 XcalableMP
Original MPI

PC Cluster

1 2 4 8 16
Number of Node

M
op
/s

0

1000

1500

2000

500

T2K Tsukuba

1 2 4 8 16
Number of Node

0

1800

2700

3600 XcalableMP
Original MPI

900

Reference
[1] Jinpil Lee and Mitsuhisa Sato, “Implementation and
Perfor-mance Evaluation of XcalableMP“, A Parallel
Programming Language for Distributed Memory Systems,
39th Annual International Conference on Parallel Processing
(2010)
[2] Masahiro Nakao, Jinpil Lee, Taisuke Boku and Mitsuhisa
Sato. “XcalableMP Implementation and Performance of NAS
Parallel Benchmarks”, Fourth Conference on Partitioned
Global Address Space Programming Model (PGAS10),
NewYork, USA, Oct. (2010)

#pragma xmp distribute(block,block) on pros
…
#pragma xmp loop on t(*,j)
for (j=1; j<=lastrow-firstrow+1; j++) {
 sum = 0.0;
 for (k=rowstr[j]; k<rowstr[j+1]; k++) {
 sum = sum + a[k]*p[colidx[k]];
 }
 w[j] = sum;
}
#pragma xmp reduction(+:w) on p(*,:)

#pragma xmp gmove
q[:] = w[:];

Integer Sort

In order to investigate the performance of
parallel programs written in XcalableMP, we
have implemented NAS Parallel Benchmarks,
the Integer Sort (IS) benchmark and the
Conjugate Gradient (CG) benchmark.

Two-dimensional template is declared in first
line and one-dimensional working arrays(p[],
q[], w[]) are aligned to one dimension of the
template. Index arrays(rowstr[], colidx[]) are
calculated to refer the array a[] before entering
the loop in each node. This operation enables
the nested loop statements to be calculated
which causes an equivalent processing with
the MPI version of CG. The “gmove” directive
copies all elements of array w[] to array q[]
with different distributions.

Integer Sort

Implementation and Performance
of NPB

