X=7=-MP

Productivity and Performance of
Global-View Programming with
XcalableMP PGAS Language

(OMasahiro Nakao, Jinpil Lee,
Taisuke Boku, Mitsuhisa Sato

Center for Computational Sciences, University of Tsukuba
RIKEN Advanced Institute for Computational Science(AICS)

&gﬁg& F

RIK=N

Background X==":=-MP

® Partitioned Global Address Space (PGAS) model
has been proposed

® Global address space where any processes
can access distributed data transparently

® |[ncreases development productivity
of parallel applications

® The global address space is logically
partitioned between the processes

® Enables programmers to perform
performance-aware parallel programming

® Two kinds of memory abstract model :
® Global-view model, Local-view model

2 CCGrid2012@0ttawa, Canada

Overview of XcalableMP X .==--MP

® XcalableMP(XMP) is a PGAS language http://www.xcalablemp.org
® Directive-based extension of C99 and Fortran95
® “Performance-aware” parallel programming (after slide)
® The basic execution model is SPMD

® Two memory abstract models in one language :
[0 Global-view model J

® [ocal-view model (compatible with the coarray Fortran)

#pragma xmp loop on t(i) reduction(+:res)
for(i =0; 1 < 100; i++){

array[1] = func(i);

res += array[i];

}

CCGrid2012@0ttawa, Canada

Objective XZ==-MP

® XMP global-view model is useful when parallelizing data-
parallel programs with minimum code modification

® Consider the Productivity and Performance of
XMP global-view model

l How ?

Compare XMP with other PGAS Language
(o Unified Parallel C (UPC) | =————=3 = Global-view model

o Global Arrays (GA) Why ? m C language extension
o Coarray Fortran (CAF) m SPMD

o Chapel ® Many people use

o X10

CCGrid2012@0ttawa, Canada

Outline X===-MP

® Summarize features of XMP and UPC in global-view
model

® Evaluate their Performance and Productivity through
some benchmarks

S5 CCGrid2012@0ttawa, Canada

What’s Global-view model ? X == -MP

® Data-mapping and work-mapping automatically

® Example of data-mapping :
01234506 7 8 9101112131415

a] [T 7]
Node #1 [EE[EHERI
Node #2 \
\ /
Node #3 T[T [
Node #4 / ///

Distributed Array

CCGrid2012@0ttawa, Canada

What’s Global-view model ? X == -MP

® Data-mapping and work-mapping automatically
® Example of work-mapping :
01234506 7 8 9101112131415

2 HEERREEN

Node #1 . Execute “for” loop in

Node #2 _ parallel with affinity to

array distribution
Node #3 -

Node #4

Each node computes Red elements in parallel

CCGrid2012@0ttawa, Canada

Concepts of XMP and UPC X(.=--.-MP

® UPC : Distributed Shared Memory Programming

® XMP : Performance-aware Programming

ali] =tmp; // al[] is a distributed array, tmp is a local variable

® UPC calculates where a[i] is located and its offset

® XMP accesses ali] directly (no communication)

In XMP, when accessing distributed array with communication,
XMP directive should be inserted before the access.

#pragma xmp gmove
a[i] = tmp;

Because of this policy, XMP may access faster than UPC
CCGrid2012@0ttawa, Canada

Advantage? XZ==-MP

® XMP implementation is very simple, but programmer
must consider whether needs communication or not

® However, communication points of XMP are more
explicit than those of UPC

XMP

ali] = tmp; This line must not occur communication

#pragma xmp gmove
ali] = tmp;

This line may occur communication

UPC
ali] = tmp;

CCGrid2012@0ttawa, Canada

Access speed to distributed array

® Evaluate access speed to distributed array, which has an
affinity with own process

® Distributed array is accessed in parallel application

® Access speed is important for its performance

al]

N
How much overhead

é ﬁ ﬁ ﬁ <[for internal operation?J
#1 #2 #3 #4

10 CCGrid2012@0ttawa, Canada

Evaluation of access speed

® Read/write access speed to distributed array within
a single node (no-communication)

® Type array : double

® Number of elements : 2220 (= TM) every node
® Distribution manner : block, cyclic, block-cyclic
® Tsukuba Omni XcalableMP Compiler 0.5.4 (TXMP)

® Berkley Unified Parallel C 2.14.0 (BUPC)

XMP UPC
#pragma xmp loop on t(i) upc forall(i = 0; i < N; i++; &a[i])
for(i=0; i< N; i++) ali] =tmp; //tmp is alocal

ali] =tmp; //tmpis alocal
11 CCGrid2012@0ttawa, Canada,

12

Environment X===-MP

® T2K Tsukuba System : Linux cluster
® CPU : AMD Opteron Quad-Core 8356 2.3GHz (4 sockets)
® Memory : DDR2 667MHz 32GB
® Network : Infiniband DDR(4rails) 8GB/s

CCGrid2012@0ttawa, Canada

Result X==MP

GCC B TXMP-Block [TXMP-Cyclic W TXMP-Block-cyclic
B BUPCBIlock BUPC-Cyclic [BUPCBlock-cyclic
BUPC
0.020 BUPC A
—
o 0.015
N’
“EJ 0.010 Good
=
0.005
0

read write
13 CCGrid2012@0ttawa, Canada

Discussion X==r-MP

® UPC has a “privatization” technique to speed up for
access to distributed array

® Direct access by using a local address of a distributed array

shared double a[SIZE]; assign a beginning address of

double *a_ptr; __—{ distributed array to local pointer

a_ptr = &[MYTHREAD];
; But, program is more complex,

for(i=0;i<SIZE/THREADS; i++) because work-mapping must
a_ptr[i] = be written by users

XMP can access to distributed array as fast as
a backend compiler without “privatization” technique

. J

14 CCGrid2012@0ttawa, Canada

Outline X===-MP

® Summarize features of XMP and UPC in global-view
model

|

® Evaluate their Productivity and Performance through
some benchmarks

15

CCGrid2012@0ttawa, Canada

16

Data layout XZ==-MP

® Data layout is important to
® Reduce communication and balance CPU loads on each node

® Adjust any applications

Need to support various data layouts

CCGrid2012@0ttawa, Canada

UPC data distribution

e UPC :

X=7=-MP

shared [NB] double a[N]; // NB is a block size

[TTTTTTT]
[|#1 42 []43 |#4]
cyclic DT T T T TR T NB =1
kc"yoc‘ii‘é' (1111 [TTTTTTT] IERE NB = N/8

® Merit : Very easy to understand

® Demerit : Only in order of its memory (restriction of

multi-dimensional array)
17

CCGrid2012@0ttawa, Canada

XMP data distribution XZ==-MP

® The directives specify a | goupte a[ng:
data distribution among zpmgma Xmp EOdef 5(42(@ 1
. . pragma xmp template :N-
nodes (inherit from HPF) | 4ragma xmp distribute tblock) on p

#pragma xmp align a[i1] with t(1)

block [T [[TTIITT]

® Multi-dimensional array is supported

double a[N][N];

#pragma xmp nodes p(2, 2) #1 #2
#pragma xmp template t(@:N-1, @:N-1)
#pragma xmp distribute t(block, block) on p 43
#pragma xmp align a[1][3j] with t(1,73)

18 CCGrid2012@0ttawa, Canada

19

Shadow/Reflect directives X.-=-n-MP

® Supports shadow region for stencil applications

double a[9];

#pragma xmp nodes p(3) A

#pragma xmp template t(0:9) Data

#pragma xmp distribute t(block) onto p ’ distribution

#pragma xmp align ali] with t(i))

#pragma xmp shadow a[1:1] // set width of shadow region
//changing a[]

#pragma xmp reflect (a) // synchronize shadow region

219) [EIENED

#1 #2 #3
CCGrid2012@0ttawa, Canada

20

Shadow/Reflect directives X.-=-n-MP

® Supports shadow region for stencil applications

double a[9];

#pragma xmp nodes p(3))

#pragma xmp template t(0:9) Data

#pragma xmp distribute t(block) onto p ’ distribution

#pragma xmp align ali] with t(i))

#pragma xmp shadow a[1:1] // set width of shadow region
//changing a[]

#pragma xmp reflect (a) // synchronize shadow region

IR 0 1 2 3 2 34 5 6 5 6 7 8

#1 #2 #3
CCGrid2012@0ttawa, Canada

21

Shadow/Reflect directives X.-=-n-MP

® Supports shadow region for stencil applications

double a[9];

#pragma xmp nodes p(3))

#pragma xmp template t(0:9) Data

#pragma xmp distribute t(block) onto p ’ distribution

#pragma xmp align ali] with t(i))

#pragma xmp shadow a[1:1] // set width of shadow region
//changing a[]

#pragma xmp reflect (a) // synchronize shadow region

I /
IR 0 1 2 /3 2 3 4 5 6 5 6 7 8

#1 #2 #3

CCGrid2012@0ttawa, Canada

Laplace Solver XZ==-MP

® To evaluate the XMP shadow function
® bly]l[x] = (aly+1][x]+aly-1][x]+aly][x+1]+aly][x-1])/4;

® a[][] and b[][] are distributed array i

#pragma xmp shadow a[1:1][0] // define shadow

#pragma xmp reflect (a) // synchronize shadow region
#pragma xmp loop on t(y)
for(y = 1; y < N-1; y++)
for(x = 1; x < N-1; x++)
blyl[x] = (aly-1][x]+aly+1]x]+alyl[x-1]+alyl[x+1])/4;

This XMP code is similar to serial one.

a[N][N]

22 CCGrid2012@0ttawa, Canada

Laplace in UPC X==—:-MP

® |n UPC, we use upc_memget() to get shadow region

DS 1= 1)
if(MYTHREAD == 0){
upc_memgei(&bottom[1], &b

-R)*sizeof(double));

else | == -14

: Needs many if-else
}} statements to
upc_barrier; communicate and

upc_forall(y=1; y<N-1; y++; &b[y][0]}{ calculate shadow region
[if(MYTHREAD == 0){
if(y == WIDTH-1)

for(x=1; x<N-1; x++) D[y][x] = (a[y-1][x] + bpttom[x] + a[y][x-1] + a[y][x+1])/4;

[} else {

® We implemented UPC-privatization version too
23 CCGrid2012@0ttawa, Canada

Measurement of productivity x a MP

. . . [
® To measure productivity, we use a Delta SLOC metnc[|
® The metric indicates how many lines of code change from the

original code. How many lines have been modified, added, and
deleted from the original code

® The smaller the total of three metrics or the total source code
is, the better the productivity is

® For example : #pragma xmp loop on t(i) XMP
for(i=0;i<100;i++) Added line : +1
Original / ali] = func(i);
for(i=0;i<100;i++)
a[i] = func(i); | upc_forall(i=0;i<100;i++;&a[i]) | UPC
a[i] = func(i); Modified line : +1

[1] Andrew . et. al. , “Evaluating Coarray Fortran with the CGPOP Miniapp”,

24 PGAS11, 2011 CCGrid2012@0ttawa, Canada

Productivity XZ==-MP

Original TXMP BUPC BUIFE
privatization
Total source 34 45 23 20
code
Modified - 0 4 2
Added - 11 39 41
Deleted - 0 0 5
Total delta

3LOC - 11 43 48

25 CCGrid2012@0ttawa, Canada

Productivity XZ==-MP

Original TXMP BUPC BUIFE
privatization
Total source 34 45 23 20
code
Modified - 0 4 2
Added - 11 39 41
Deleted - 0 0 5
Total delta

3LOC - 11 43 48

Especially, the value of “Modified” and “Deleted” are 0 !

This means XMP can parallelize it very simply
26 CCGrid2012@0ttawa, Canada

Productivity XZ==-MP

Original TXMP BUPC BUIFE
privatization
Total source 34 45 23 20
code
Modified - 0 4 2
Added - 11 [39 41
Deleted - 0 0 5
Total delta

3LOC - 11 43 48

UPC must use many ‘“if-else” statements for Comm. and
Calculation. The productivity of XMP is higher than those of UPCs

27 CCGrid2012@0ttawa, Canada

Performance X===-MP

Using array size is 1024x1024, (Strong scaling)
50

. B TXMP B BUPC
0 B BUPC-privatization
S 40
5
§ 30
= Good
g 20
O
S 10
: 1

0 e ————— N |

1 2 4 8 16 32 64 128 256

Number of CPU Cores

Performance of TXMP is higher than those of BUPCs
2g because there are many “if-else” statements in BUPCs

Conjugate Gradient(CG) X.-=—>-MP

® To evaluate a more general benchmark

® Need to communicate between distributed arrays and
local variables for reduction or transposition

® |n XMP, we have developed by using 2D process grid
and array w[], q[], r{], pl], z[] are distributed

® Automatically work-mapping

® [n UPC, we have used UPC-CQG developed by the GWU
High-Performance Computing Lab.

® Only array w[] is distributed
® Manually work-mapping

http://threads.hpcl.gwu.edu/sites/npb-upc
29 CCGrid2012@0ttawa, Canada

Conjugate Gradient(CG) X.-=—>-MP

® XMP :

® When the number of processes is not power-of-two,
® 2, 8, 32,128, ...

® Transferred data is larger than UPC-CG because unused
data is reduced by using XMP global-view communication
directive

® UPC:

® Only used data is reduced anytime

® Each thread calculates beginning and end point of
transferred data (is similar to NASA version CQG)

® However, the value of total delta SLOC and total source
code are larger than those of XMP-CG

30 CCGrid2012@0ttawa, Canada

Productivity result X===MP

® |mplementations of XMP and UPC are based on
C language serial CG developed by RWCP in Japan

Original TXMP BUPC EUFC
privatization
fotal sourcef 544 466 664 651
code

Modified - 20 10 3

Added - 116 206 303
Deleted - 20 28 28

Total delta
SLOG - 162 334 334

31 CCGrid2012@0ttawa, Canada

Productivity result XZ==-MP

® |mplementations of XMP and UPC are based on
C language serial CG developed by RWCP in Japan

Original TXMP BUPC EUFC
privatization
fotal sourcef 544 466 664 651
code

Modified - 20 10 3

Added - 116 206 303
Deleted - 20 28 28

Total delta
SLOG - 162 334 334

32 CCGrid2012@0ttawa, Canada

Performance result

X==MP

Size of array is 150000 x 15000 (Class C), Strong scaling

15000

B TXMP B BUPC
— B BUPC-privatization
8 12000
3 22% |
\2_, 9000
3
c Good
g 6000 I
o)
E 3000 l
" N

1 2 4 8 16 32 64 128 256

Number of CPU Cores —
33 CCGrid2012@0ttawa, Canada

Summary and Future work X_MP

® Summary

® We investigated productivity and performance of the XMP in
global-view model to compare with the UPC

® XMP supports more data layouts, and has a higher performance
access speed to distributed array without “privatization”

® |n laplace solver, the performance and productivity of XMP are
higher because XMP supports shadow region

® |n CG, the performance of XMP and UPC is almost the same
except 128 CPU cores, the productivity of XMP is high

XMP has a rich global-view programming model that
allows it to develop applications with a smaller cost

® Future work

® Evaluation for real applications in larger number of nodes
34 ©® compare against Chapel, X10, and so on

