
Productivity and Performance of
Global-View Programming with
XcalableMP PGAS Language

◯Masahiro Nakao, Jinpil Lee,
Taisuke Boku, Mitsuhisa Sato

Center for Computational Sciences, University of Tsukuba
RIKEN Advanced Institute for Computational Science(AICS)

CCGrid2012@Ottawa, Canada

Background

Partitioned Global Address Space (PGAS) model
has been proposed

Global address space where any processes
can access distributed data transparently
Increases development productivity
 of parallel applications

The global address space is logically
partitioned between the processes
Enables programmers to perform
performance-aware parallel programming

Two kinds of memory abstract model :
Global-view model, Local-view model

2

CCGrid2012@Ottawa, Canada

Overview of XcalableMP

XcalableMP(XMP) is a PGAS language
Directive-based extension of C99 and Fortran95
“Performance-aware” parallel programming (after slide)
The basic execution model is SPMD
Two memory abstract models in one language :
Global-view model
Local-view model (compatible with the coarray Fortran)

#pragma	 xmp	 loop	 on	 t(i)	 reduction(+:res)
for(i	 =	 0;	 i	 <	 100;	 i++){
	 	 	 array[i]	 =	 func(i);
	 	 	 res	 +=	 array[i];
}

http://www.xcalablemp.org

3

CCGrid2012@Ottawa, Canada

XMP global-view model is useful when parallelizing data-
parallel programs with minimum code modification
Consider the Productivity and Performance of
XMP global-view model

Objective

How ?

Compare XMP with other PGAS Language
Unified Parallel C (UPC)
Global Arrays (GA)
Coarray Fortran (CAF)
Chapel
X10

Global-view model
C language extension
SPMD
Many people use

Why ?

4

CCGrid2012@Ottawa, Canada

Outline

Summarize features of XMP and UPC in global-view
model
Evaluate their Performance and Productivity through
some benchmarks

5

CCGrid2012@Ottawa, Canada

What’s Global-view model ?

Data-mapping and work-mapping automatically
Example of data-mapping :

Node #4
Node #3
Node #2

a[]
0 1 2 3 4 5 6 7 8 9 10 111213 14

Node #1

15

Distributed Array

6

CCGrid2012@Ottawa, Canada

What’s Global-view model ?

Data-mapping and work-mapping automatically
Example of work-mapping :

0 1 2 3 4 5 6 7 8 9 10 111213 14 15

Each node computes Red elements in parallel

Execute “for” loop in
parallel with affinity to
array distribution

Node #4
Node #3
Node #2
Node #1

a[]

7

CCGrid2012@Ottawa, Canada

Concepts of XMP and UPC

UPC : Distributed Shared Memory Programming
XMP : Performance-aware Programming

a[i] = tmp; // a[] is a distributed array, tmp is a local variable

UPC calculates where a[i] is located and its offset
XMP accesses a[i] directly (no communication)
In XMP, when accessing distributed array with communication,
XMP directive should be inserted before the access.

#pragma xmp gmove
a[i] = tmp;

Because of this policy, XMP may access faster than UPC
8

CCGrid2012@Ottawa, Canada

Advantage?

XMP implementation is very simple, but programmer
must consider whether needs communication or not
However, communication points of XMP are more
explicit than those of UPC

9

a[i] = tmp;
XMP

a[i] = tmp;
UPC

This line may occur communication

This line must not occur communication

#pragma xmp gmove
a[i] = tmp;

CCGrid2012@Ottawa, Canada

Access speed to distributed array

Evaluate access speed to distributed array, which has an
affinity with own process
Distributed array is accessed in parallel application

Access speed is important for its performance

a[]

#1 #2 #3 #4

How much overhead
for internal operation?

10

CCGrid2012@Ottawa, Canada

Evaluation of access speed

Read/write access speed to distributed array within
a single node (no-communication)

Type array : double
Number of elements : 2^20 (= 1M) every node
Distribution manner : block, cyclic, block-cyclic

Tsukuba Omni XcalableMP Compiler 0.5.4 (TXMP)
Berkley Unified Parallel C 2.14.0 (BUPC)

#pragma xmp loop on t(i)
for(i = 0; i < N; i++)
 a[i] = tmp; // tmp is a local

upc_forall(i = 0; i < N; i++; &a[i])
 a[i] = tmp; // tmp is a local

XMP UPC

11

CCGrid2012@Ottawa, Canada

Environment

T2K Tsukuba System : Linux cluster
CPU : AMD Opteron Quad-Core 8356 2.3GHz (4 sockets)
Memory : DDR2 667MHz 32GB
Network : Infiniband DDR(4rails) 8GB/s

12

CCGrid2012@Ottawa, Canada

Result

0

0.005

0.010

0.015

0.020

read write

GCC TXMP-Block TXMP-Cyclic TXMP-Block-cyclic

BUPC-Block BUPC-Cyclic BUPC-Block-cyclic

Ti
m

e（
se

c.）

TXMPTXMP Good

BUPC
BUPC

13

CCGrid2012@Ottawa, Canada

Discussion

UPC has a “privatization” technique to speed up for
access to distributed array

Direct access by using a local address of a distributed array

shared double a[SIZE];
double *a_ptr;
a_ptr = &a[MYTHREAD];
 :
for(i=0;i<SIZE/THREADS; i++)
 a_ptr[i] =

assign a beginning address of
distributed array to local pointer

But, program is more complex,
because work-mapping must
be written by users

XMP can access to distributed array as fast as
a backend compiler without “privatization” technique

14

CCGrid2012@Ottawa, Canada

Outline

Summarize features of XMP and UPC in global-view
model
Evaluate their Productivity and Performance through
some benchmarks

15

CCGrid2012@Ottawa, Canada

Data layout is important to
Reduce communication and balance CPU loads on each node
Adjust any applications

Data layout

Need to support various data layouts

16

CCGrid2012@Ottawa, Canada

UPC data distribution

UPC :

#1 #2 #3 #4NB = N/4

block

cyclic

block-
cyclic

NB = 1

NB = N/8

Merit : Very easy to understand
Demerit : Only in order of its memory (restriction of
multi-dimensional array)

shared [NB] double a[N]; // NB is a block size

17

CCGrid2012@Ottawa, Canada

XMP data distribution

18

The directives specify a
data distribution among
nodes (inherit from HPF)

double	 a[N];
#pragma	 xmp	 nodes	 p(4)
#pragma	 xmp	 template	 t(0:N-1)
#pragma	 xmp	 distribute	 t(block)	 on	 p
#pragma	 xmp	 align	 a[i]	 with	 t(i)

block

double	 a[N][N];
#pragma	 xmp	 nodes	 p(2,	 2)
#pragma	 xmp	 template	 t(0:N-1,	 0:N-1)
#pragma	 xmp	 distribute	 t(block,	 block)	 on	 p
#pragma	 xmp	 align	 a[i][j]	 with	 t(i,j)

#1 #2

#3 #4

Multi-dimensional array is supported

CCGrid2012@Ottawa, Canada

Supports shadow region for stencil applications

Shadow/Reflect directives

double a[9];
#pragma xmp nodes p(3)
#pragma xmp template t(0:9)
#pragma xmp distribute t(block) onto p
#pragma xmp align a[i] with t(i)
#pragma xmp shadow a[1:1] // set width of shadow region
 : //changing a[]
#pragma xmp reflect (a) // synchronize shadow region

0 1 2 3 2 3 4 5 6 5 6 7 8

#1 #2 #3

Data
distribution

a[9]

19

CCGrid2012@Ottawa, Canada

Supports shadow region for stencil applications

Shadow/Reflect directives

double a[9];
#pragma xmp nodes p(3)
#pragma xmp template t(0:9)
#pragma xmp distribute t(block) onto p
#pragma xmp align a[i] with t(i)
#pragma xmp shadow a[1:1] // set width of shadow region
 : //changing a[]
#pragma xmp reflect (a) // synchronize shadow region

0 1 2 3 2 3 4 5 6 5 6 7 8

#1 #2 #3

Data
distribution

a[9]

20

CCGrid2012@Ottawa, Canada

Supports shadow region for stencil applications

Shadow/Reflect directives

double a[9];
#pragma xmp nodes p(3)
#pragma xmp template t(0:9)
#pragma xmp distribute t(block) onto p
#pragma xmp align a[i] with t(i)
#pragma xmp shadow a[1:1] // set width of shadow region
 : //changing a[]
#pragma xmp reflect (a) // synchronize shadow region

0 1 2 3 2 3 4 5 6 5 6 7 8

#1 #2 #3

Data
distribution

a[9]

21

CCGrid2012@Ottawa, Canada

Laplace Solver

To evaluate the XMP shadow function
b[y][x] = (a[y+1][x]+a[y-1][x]+a[y][x+1]+a[y][x-1])/4;
a[][] and b[][] are distributed array

a[N][N]

#pragma xmp shadow a[1:1][0] // define shadow
 :
#pragma xmp reflect (a) // synchronize shadow region
#pragma xmp loop on t(y)
for(y = 1; y < N-1; y++)
 for(x = 1; x < N-1; x++)
 b[y][x] = (a[y-1][x]+a[y+1][x]+a[y][x-1]+a[y][x+1])/4;

22

This XMP code is similar to serial one.

CCGrid2012@Ottawa, Canada

Laplace in UPC

In UPC, we use upc_memget() to get shadow region
if(THREADS != 1){
 if(MYTHREAD == 0){
 upc_memget(&bottom[1], &b[WIDTH][1], (N-2)*sizeof(double));
 } else if(MYTHREAD == THREADS-1){
 :
 }
}
upc_barrier;
upc_forall(y=1; y<N-1; y++; &b[y][0]){
 if(MYTHREAD == 0){
 if(y == WIDTH-1){
 for(x=1; x<N-1; x++) b[y][x] = (a[y-1][x] + bottom[x] + a[y][x-1] + a[y][x+1])/4;
 } else {
 :

Needs many if-else
statements to
communicate and
calculate shadow region

We implemented UPC-privatization version too
23

CCGrid2012@Ottawa, Canada

Measurement of productivity

To measure productivity, we use a Delta SLOC metric
The metric indicates how many lines of code change from the
original code. How many lines have been modified, added, and
deleted from the original code
The smaller the total of three metrics or the total source code
is, the better the productivity is
For example :

for(i=0;i<100;i++)
 a[i] = func(i); upc_forall(i=0;i<100;i++;&a[i])

 a[i] = func(i);

#pragma xmp loop on t(i)
for(i=0;i<100;i++)
 a[i] = func(i);Original

XMP
Added line : +1

UPC
Modified line : +1

24

[1] Andrew I. et. al. , “Evaluating Coarray Fortran with the CGPOP Miniapp”,
PGAS11, 2011

[1]

CCGrid2012@Ottawa, Canada

Original TXMP BUPC BUPC-
privatization

Total source
code 34 45 73 70

Modified - 0 4 2

Added - 11 39 41

Deleted - 0 0 5

Total delta
SLOC - 11 43 48

Productivity

25

CCGrid2012@Ottawa, Canada

Productivity

Original TXMP BUPC BUPC-
privatization

Total source
code 34 45 73 70

Modified - 0 4 2

Added - 11 39 41

Deleted - 0 0 5

Total delta
SLOC - 11 43 48

Especially, the value of “Modified” and “Deleted” are 0 !!
This means XMP can parallelize it very simply

26

CCGrid2012@Ottawa, Canada

Productivity

Original TXMP BUPC BUPC-
privatization

Total source
code 34 45 73 70

Modified - 0 4 2

Added - 11 39 41

Deleted - 0 0 5

Total delta
SLOC - 11 43 48

UPC must use many “if-else” statements for Comm. and
Calculation. The productivity of XMP is higher than those of UPCs

27

CCGrid2012@Ottawa, Canada

Performance

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256

TXMP BUPC
BUPC-privatization

P
er

fo
rm

an
ce

(G
Fl

op
s)

Number of CPU Cores

Using array size is 1024x1024, (Strong scaling)

Good

28

Performance of TXMP is higher than those of BUPCs
because there are many “if-else” statements in BUPCs

CCGrid2012@Ottawa, Canada

Conjugate Gradient(CG)

To evaluate a more general benchmark
Need to communicate between distributed arrays and
local variables for reduction or transposition
In XMP, we have developed by using 2D process grid
and array w[], q[], r[], p[], z[] are distributed

Automatically work-mapping

In UPC, we have used UPC-CG developed by the GWU
High-Performance Computing Lab.

Only array w[] is distributed
Manually work-mapping

http://threads.hpcl.gwu.edu/sites/npb-upc

29

CCGrid2012@Ottawa, Canada

Conjugate Gradient(CG)

XMP :
When the number of processes is not power-of-two,
2, 8, 32, 128, ...
Transferred data is larger than UPC-CG because unused
data is reduced by using XMP global-view communication
directive

UPC :
Only used data is reduced anytime
Each thread calculates beginning and end point of
transferred data (is similar to NASA version CG)
However, the value of total delta SLOC and total source
code are larger than those of XMP-CG

30

CCGrid2012@Ottawa, Canada

Original TXMP BUPC BUPC-
privatization

Total source
code 376 466 664 651

Modified - 20 10 3

Added - 116 296 303

Deleted - 26 28 28

Total delta
SLOC - 162 334 334

Productivity result

Implementations of XMP and UPC are based on
C language serial CG developed by RWCP in Japan

31

CCGrid2012@Ottawa, Canada

Original TXMP BUPC BUPC-
privatization

Total source
code 376 466 664 651

Modified - 20 10 3

Added - 116 296 303

Deleted - 26 28 28

Total delta
SLOC - 162 334 334

Productivity result

Implementations of XMP and UPC are based on
C language serial CG developed by RWCP in Japan

32

CCGrid2012@Ottawa, Canada

Performance result

0

3000

6000

9000

12000

15000

1 2 4 8 16 32 64 128 256

TXMP BUPC
BUPC-privatization

P
er

fo
rm

an
ce

(M
op

s)

Number of CPU Cores

Size of array is 150000 x 15000 (Class C), Strong scaling

Good

33

22%

CCGrid2012@Ottawa, Canada

Summary and Future work

Summary
We investigated productivity and performance of the XMP in
global-view model to compare with the UPC
XMP supports more data layouts, and has a higher performance
access speed to distributed array without “privatization”
In laplace solver, the performance and productivity of XMP are
higher because XMP supports shadow region
In CG, the performance of XMP and UPC is almost the same
except 128 CPU cores, the productivity of XMP is high

Future work
Evaluation for real applications in larger number of nodes
compare against Chapel, X10, and so on

XMP has a rich global-view programming model that
allows it to develop applications with a smaller cost

34

