
HPC Challenge Award Competition Class 2 at SC12

XcalableMP for Productivity and Performance in
HPC Challenge Award Competition Class 2

Masahiro Nakao1,a) Hitoshi Murai2 Takenori Shimosaka2 Mitsuhisa Sato1,2

1. Center for Computational Sciences, University of Tsukuba, Japan
2. RIKEN Advanced Institute for Computational Science, Japan
a) mnakao@ccs.tsukuba.ac.jp

1. Summary
In this paper, we present our XcalableMP implementation of the HPCC HPL, RandomAccess, FFT, and the Himeno benchmark [1]

which is a typical stencil application.
The highlights of this submission are as follows:
• We implemented three HPCC benchmarks; HPL, RandomAccess, and FFT. In addition, we implemented the Himeno benchmark.
• The SLOC (Source lines of code) of the benchmarks is shown in Table 1.
• The performance summary of the benchmarks is shown in Table 2.
• To measure performances, we used the K computer at RIKEN AICS and HA-PACS at University of Tsukuba in Japan (Table 3).

Table 1 Source lines of code for HPCC and Himeno benchmarks

HPL Random FFT HimenoAccess
XcalableMP 288 253(278)† 87(+1,522)‡ 115
Reference 8,800 938 128(+1,904)* 612**
† The number in no-brackets is SLOC of the K computer specific ver-

sion RandomAccess, the number in brackets is one for HA-PACS.
‡ SLOC of the FFT main kernel written in XcalableMP is 87, and

SLOC of the FFT interface and another kernels written in C is 1,522.
* We sum up SLOC of all source code in hpcc-1.4.2/FFT/. The number

of 128 is SLOC of corresponds to the FFT main kernel of XcalableMP.
** Refer to http://accc.riken.jp/2466.htm#itemid4562

Table 2 Performance summary of HPCC and Himeno benchmarks achieved
on the K computer and HA-PACS

Code Machine Max nodes (× cores) Performance

HPL K Computer 4,096 node (× 8) 156.5 TFlops(30% of peak)
HA-PACS 64 node (× 16) 16.8 TFlops(79% of peak)

Random K Computer 8,192 node (× 8) 104.3 GUP/s
Access HA-PACS 64 node (× 16) 2.4 GUP/s

FFT K Computer 1,024 node (× 8) 986.8 GFlops
HA-PACS 64 node (× 16) 219.3 GFlops

Himeno K Computer 1,024 node (× 8) 5.8 TFlops
HA-PACS 64 node (× 16) 1.6 TFlops

Table 3 Specification of each node and software on the experimental environment

K computer HA-PACS*
CPU SPARC64 VIIIfx 2.0GHz (Single Socket), 8Cores/Socket Xeon E5-2670 2.6GHz (Dual Socket), 8Cores/Socket
Memory DDR3 SDRAM 16GB, 64GB/s/Socket DDR3 SDRAM 128GB, 51.4GB/s/Socket
Network Torus fusion six-dimensional mesh/torus network, 5GB/s Infiniband QDRx2rails Fat-tree network, 4GB/s
C / Fortran Compier Fujitsu C/Fortran Compiler Version K-1.2.0-09 Intel Compiler 12.1
BLAS Fujitsu SSLII Version K-1.2.0-09 Intel MKL 10.3
Communication Library Fujitsu MPI Version K-1.2.0-09 Intel MPI 4.0.3, GASNet 1.18.2
XcalableMP Omni XcalableMP Compiler 0.6.0-alpha**

* HA-PACS has NVIDIA Tesla M2090 as an accelerator device, but we do not use it in this time.
** The official version will be available until SC12 at http://www.xcalablemp.org/.

2. Overview of XcalableMP
XcalableMP [2–4], XMP for short, is a directive-based language extension for distributed memory systems, which is proposed by the

XMP Specification Working Group consists of members from academia, research laboratories, and industries. It allows users to easily
develop parallel programs and to tune performance with minimal and simple notation. A part of the design is based on the experiences
of High Performance Fortran (HPF) [5, 6] and Coarray Fortran (CAF) [7].

The features of XMP are as follows:
• XMP supports typical parallelization under “global-view model” programming, and enables parallelizing the original sequential

code using minimal modification with simple directives.
• XMP also includes a CAF-like PGAS feature as “local-view model” programming.

1

HPC Challenge Award Competition Class 2 at SC12

• XMP is defined as an extension for familiar languages, such as C and Fortran, to reduce code-rewriting and educational costs.
• The important design principle of XMP is “performance awareness”. All actions of communication and synchronization are taken

by directives or coarray syntax, different from HPF.
We have been developing an Omni XMP Compiler as a prototype compiler. The Omni XMP Compiler can compile a XMP C source

code and a XMP Fortran source code. Each source code and language is called XMP/C or XMP/Fortran in this paper. The Omni XMP
Compiler and a XMP specification are available at a XMP official website (http://www.xcalablemp.org).

3. Implementation and Performance of benchmarks

3.1 Experimental Settings
This section provides a brief overview of the XMP implementation and performance result of HPL, RandomAccess, FFT, and Himeno

benchmark. All benchmarks were compiled using Omni XcalableMP 0.6.0-alpha developed at University of Tsukuba and RIKEN AICS.
To evaluate the performance of these benchmarks, we used maximum 65,536 CPU cores of the K computer and maximum 1,024 CPU
cores of HA-PACS cluster (Table 3). All source line counts exclude comments and blank lines, but include validation operation and
printing performance result (Table 1).

3.2 HPL
3.2.1 Implementation

The HPL measures the floating point rate of execution for solving a dense system of linear equations. We implemented XMP version
HPL written in XMP/C. The points of our implementation are as follows:
� Block-cyclic distribution

XMP uses a “template” as a virtual array to specify the data distribution. The follow code and Fig. 1 show that array A[][] is
distributed on each node in block-cyclic manner. In this code, a template directive declares a two-dimensional template t, and a
node directive declares a two-dimensional node set p. A distribute directive distributes the template t onto P×Q nodes in the same
number of blocks. Finally, an align directive declares the array A[][] and aligns it with the template t. Note that a macro does not
be used in XMP directive now. In the follow source code, macro P, Q, N, and NB are used to explain XMP directives.

1 double A[N][N];
2 #pragma xmp nodes p(P,Q)
3 #pragma xmp template t(0:N−1, 0:N−1)
4 #pragma xmp distribute t(cyclic(NB), cyclic(NB)) onto p
5 #pragma xmp align A[i][j] with t(j,i)

Fig. 1 Block cyclic distribution

� Panel broadcast by using gmove directive
XMP can access global data using the gmove directive while keeping the global image. The XMP/C is extended to support the array
section notation to access global data easily. The follow code and Fig. 2 indicate a Panel broadcast operation. The number before
colon in brackets means start elements accessed and the number after colon means the length of elements accessed. Target element
block of the array A[][] which is blue in Fig. 2 is broadcasted to the array A L[][] which exists on each node. The array A L[][] is
also distributed in block-cyclic manner, but only one dimension of the array A L[][] is distributed. A programmer does not need to
pack/unpack data for translation because XMP runtime can do it automatically.

1 double A L[N][NB];
2 #pragma xmp align A L[i][∗] with t(∗,i)
3 :
4 #pragma xmp gmove
5 A L[j+NB:N−j−NB][0:NB] = A[j+NB:N−j−NB][j:NB];

U

NB

j

j+NB

N-j-NB

A[][] A_L[][]

Panel Broadcast

Fig. 2 Panel broadcast

2

HPC Challenge Award Competition Class 2 at SC12

� Usage of BLAS library for distributed array
High performance mathematical libraries, such as BLAS, ScaLAPACK, and so on, are often used in computational science. In XMP,
a programmer can use these libraries for distributed array defined by XMP directives. XMP has a rule that a pointer of distributed
array indicates the local pointer on the node which has its distributed data. The follow code shows that DGEMM function applies
the distributed array A[][], A L[][], and A U[][]. The ltog y and ltog x are macros to calculate a global index from a local index.

1 cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, N/Q−local y, N/P−local x, NB, −1.0,
2 &A L[ltog y(local y)][0], NB, &A U[0][ltog x(local x)], N/P, 1.0, &A[ltog y(local y)][ltog x(local x)], N/P);

3.2.2 Performance
To implement the HPL, we used the BLAS library which is parallelized with pthread automatically. Therefore, we executed our im-

plementation with 1 processes 8 threads on one CPU on each machine. The data size used in this evaluation is about 90% of the system
memory. For comparison, we also evaluated the hpcc-1.4 HPL on HA-PACS. The performance results are shown in Table 4 and Table 5.
On HA-PACS, the performance of the XMP implementation is good and is equal to that of the hpcc-1.4 HPL. However, the performance
on the K computer is not good on only one node. Now, we are investigating the cause of the inefficient point.

Table 4 The performance of HPL on the K computer

#Cores Performance (TFlops) of peak
8 0.079 61.8%

32 0.300 58.6%
128 1.145 55.9%
512 4.333 52.8%

2,048 15.736 48.0%
8,192 52.933 40.3%

32,768 156.497 29.8%

Table 5 The performance of HPL on HA-PACS

#Cores Performance (TFlops) of peak
XMP hpcc-1.4 XMP hpcc-1.4

8 0.150 0.149 90.1% 89.5%
16 0.288 0.295 86.4% 88.7%
32 0.571 0.576 85.8% 86.5%
64 1,140 1.155 85.6% 86.8%

128 2.215 2.259 83.1% 84.9%
256 4.405 4.574 82.7% 85.9%
512 8.784 8.878 82.5% 83.4%

1,024 16.795 17.680 78.9% 83.0%

3.3 RandomAccess
3.3.1 Implementation

RandomAccess benchmark measures the performance of random integer updates of memory. The measurement is Giga UPdates per
Second(GUPS). Our algorithm is iterated over sets of CHUNK updates on each node. In each iteration, it calculates for each update the
destination node that owns the array element to be updated and communicates the data with each other. This communication pattern is
known as the complete exchange or all-to-all personalized communication, which can be performed efficiently by an algorithm called
recursive exchange algorithm when the number of nodes is power-of-two [8].

We implemented the algorithm with a set of remote writes to a coarray in local-view programming by using XMP/C. Note that the
number of the remote writes is also sent as the additional first element of the data. A point-to-point synchronization is specified with the
XMP’s post and wait directives to realize asynchronous behavior of the algorithm.

The following code is a part of our RandomAcesss implementation. Line 2 means that elements from 0 to nsend of array send[] are
put to those from 0 to nsend of array recv[] in node partner+1. In line 3 and 7, the sync memory directive ensures the remote definition
of a coarray is compete.

1 send[isend][0] = nsend;
2 recv[j][0:nsend+1]:[ipartner+1] = send[isend][0:nsend+1]; // Coarray operation
3 #pragma xmp sync memory
4 #pragma xmp post(p(ipartner+1), 0)
5 :
6 #pragma xmp wait(p(jpartner+1))
7 #pragma xmp sync memory

The coarray feature of XMP on the K computer is based on the extend RDMA interface of its MPI. Since variables on both-hand sides
of a coarray operation should be coarrays due to a restriction of the interface, the array send on the right-hand side, which was originally
a normal (non-coarray) data, is declared as a coarray. On HA-PACS, the restriction does not exist because XMP coarray feature is
implemented by GASNet, send is declared as a normal array.

3.3.2 Performance
On the K computer and HA-PACS, we performed our implementation of RamdomAccess on each CPU core, as it is called flat-MPI.

The performance result is shown in Table 6 and Table 7. For comparison, we also evaluated the custom RandomAccess whose functions
sort data() and update table() were optimized by Fujitsu, which was used HPC Challenge class 1 in 2011. The string “Fujitsu” in Table 6
and Table 7 indicates this RandomAccess. We implemented two XMP RandomAccess codes based on this RandomAccess. The first one
was optimized for the K computer, the latter one was the same algorithm of the Fujitsu version RandomAccess. The latter one is used to
evaluate its performance on HA-PACS. SLOC and algorithm of both implementations are a bit different (Table 1). The data size used in

3

HPC Challenge Award Competition Class 2 at SC12

this evaluation is equal to 1/4 of the system memory.
Table 6 and Table 7 show that the performance of Fujitsu RandomAccess is a little better than that of XMP implementation.

Table 6 The performance of RandomAccess on the K computer

#Cores Performance (GUP/s)
XMP Fujitsu

8 0.08 0.08
64 0.70 0.62

512 2.08 2.41
4,096 11.41 13.55

32,768 61.43 75.08
65,536 104.31 120.24

Table 7 The performance of RandomAccess on HA-PACS

#Cores Performance (GUP/s)
XMP Fujitsu

1 0.07 0.07
4 0.15 0.16

16 0.28 0.32
64 0.47 0.70

128 0.93 1.52
1,024 2.38 3.55

3.4 FFT
3.4.1 Implementation

FFT benchmark measures the floating point rate of execution for double precision complex 1-dimensional Discrete Fourier Trans-
form. We parallelized a “pzfft1d.f” in ffte-5.0 [10] by using XMP/Fortran in global-view model. The follow source code is a part of in
“xmp-pzfft1d.f90” which is a XMP version “pzfft1d.f”.

1 !$XMP nodes p(∗)
2 !$XMP template tx(NX)
3 !$XMP template ty(NY)
4 !$XMP distribute tx(block) onto p
5 !$XMP distribute ty(block) onto p
6 !$XMP align A(∗,i) with ty(i)
7 !$XMP align A WORK(i,∗) with tx(i)
8 !$XMP align B(∗,i) with tx(i)
9 :

10 !$XMP gmove
11 A WORK(1:NX:1,1:NY:1) = A(1:NX:1,1:NY:1) ! all−to−all
12
13 !$XMP loop (i) on tx(i)
14 DO 70 I=1,NX
15 DO 60 J=1,NY
16 B(J,I)=A WORK(I,J)
17 60 CONTINUE
18 70 CONTINUE Fig. 3 Matrix transpose in FFT

In line 2 to 8, the template, distribute, and align directives are describing the distribution of arrays in a block manner. In six-step
FFT, matrix transpose operation is done before 1-dimensional FFT. The matrix transpose is implemented by local memory copy between
A() and B() in the sequential code. In the parallel version, the matrix transpose operation is implemented by the gmove directive and
local memory copy (line 10 to 11). Fig. 3 shows how matrix transpose A() to B() is processed on node 1. The number is the node number
where the block is allocated, and dotted lines show how the matrices are distributed. Since the distribution manner is different, node
1 does not have all the elements of matrix a which are needed for the transpose. At first, a gmove directive is written to collect those
elements. A new array A WORK() is declared to store the elements. A WORK() is distributed by template tx which was used to distribute
B(). Consequently, the local block of A WORK() and B() have the same shape. By the all-to-all communication of the gmove directive,
all elements needed for transpose are stored in local buffer. So we can copy it to B() using the loop statement in line 13 to 18. The rest
of the code is simple work-mapping parallelizing loop statements by using XMP loop directive.

The SLOC of “xmp-pzfft1d.f90” is only 87 (the SLOC of original “pzfft1d.f” is 158). Note that, our implementation of FFT uses C
interface and another kernels of the original FFT in hpcc-1.4 and ffte-5.0. In fact, the function pzfft1d() in “pzfft1d.c” calls the function
xmp pzfft1d0() in “xmp-pzfft1d.f90”. Hence, total SLOC is the almost the same as original one, but the kernel function in “xmp-
pzfft1d.f90” is simple. Furthermore, this implementation is a good demonstration how to mix a XMP program with a MPI program.

3.4.2 Performance
On the K computer, we performed our implementation with 2 processes 8 threads on one node. On HA-PACS, we performed it with

flat-MPI. The performance is shown in Table 8 and Table 9. For comparison, we also evaluated the hpcc-1.4 FFT. Note that Omni XMP
compiler only supports integer size of template now. Hence, an array which has a large number of elements cannot be distributed *1. In
this evaluation, we used the vector 16,777,216(512MB) length per process on the K computer and HA-PACS.

Table 8 and Table 9 show that the performance of XMP implementation is near to that of hpcc 1.4 FFT written in MPI. The main reason
of this difference is that the main loops in pzfft1d() is parallelized by OpenMP in MPI implementation, and not in XMP implementation.

*1 This limitation will be removed sometime in the near future.

4

HPC Challenge Award Competition Class 2 at SC12

Although XMP has an option for hybrid parallelism, the current compiler has some problems for it. In the final presentation, we will be
able to report the results by hybrid parallelism. Another reason is that our implementation does not block data when transposing. It is
not difficult to implement this blocking mechanism for XMP, but the source code will become similar to the hpcc-1.4 FFT.

Table 8 The performance of FFT on the K computer

#Cores Performance (GFlops) of peak
XMP hpcc-1.4 XMP hpcc-1.4

8 0.91 1.58 0.71% 1.23%
32 3.47 6.08 0.68% 1.19%

128 13.84 27.11 0.67% 1.32%
512 45.76 112.68 0.56% 1.37%

2,048 191.26 334.86 0.58% 1.02%
8,192 986.81 1,312.17 0.75% 1.00%

Table 9 The performance of FFT on HA-PACS

#Cores Performance (GFlops) of peak
XMP hpcc-1.4 XMP hpcc-1.4

1 0.71 0.67 3.43% 3.24%
4 2.68 2.78 3.22% 3.34%

16 7.69 8.71 2.31% 2.61%
64 18.91 24.02 1.42% 1.80%

256 74.87 80.93 1.40% 1.52%
1,024 219.33 238.39 1.03% 1.11%

3.5 Himeno benchmark
3.5.1 Implementation

The Himeno benchmark evaluates performance of incompressible fluid analysis code using the Jacobi iteration method. The reason of
selecting this benchmark is a good example of a stencil application benchmark and to demonstrate parallelization by XMP shadow and
reflect directives which communicate and synchronize the overlapped regions.

A part of the Himeno benchmark written in XMP/Fortran is shown in the follow source code. In line 5, a shadow directive declares a
shadow region of the distributed array p. The shadow directive specifies the width of the shadow region. In line 7, the reflect directive
synchronizes data of the shadow region onto the neighboring nodes before referring array p by loop iteration. This parallelization is very
simple and straightforward. Basically, a programmer only has to add XMP directives into the sequential version Himeno benchmark.

1 !$xmp nodes n(2,2)
2 !$xmp template t(mimax,mjmax,mkmax)
3 !$xmp distribute t(∗,block,block) onto n
4 !$xmp align (∗,j,k) with t(∗,j,k) :: p, bnd, wrk1, wrk2
5 !$xmp shadow p(0,1,1)
6 :
7 !$xmp reflect (p)
8 !$xmp loop (J,K) on t(∗,J,K) reduction (+:GOSA)
9 do K = 2, kmax−1

10 do J = 2, jmax−1
11 do I = 2, imax−1
12 S0 = a(I,J,K,1)∗p(I+1,J,K) + ...
13 SS = (S0∗a(I,J,K,4)−p(I,J,K))∗bnd(I,J,K)
14 GOSA = GOSA + SS ∗ SS
15 :
16 enddo
17 enddo
18 enddo

This benchmark measures performance to proceed major loops in solving the Poisson’s equation solution in Flops. To verify the result
of this benchmark, it calculates the residual of the Jacobi iteration method.

3.5.2 Performance
On the K computer, we used an automatic thread-parallelization to evaluate it performance (8 threads per process). On HA-PACS, we

measured the performance with flat-MPI. We set the number of array p elements of each node(weak scaling) is 256 × 64 × 64 on the
K computer, the number of array p elements of each node is 512 × 64 × 64 on HA-PACS. This size is able to obtain good performance
because of a cache effect.

The performance result is shown in Table 10 and Table 11 . For comparison, we also evaluated the original Himeno benchmark [1]
which is written in MPI Fortran.

Table 10 The performance of Himeno on the K computer

#Cores Performance (GFlops) of peak
XMP Original XMP Original

8 12.43 18.38 9.71% 14.36%
32 39.78 67.52 7.77% 13.19%

128 127.81 231.07 6.24% 11.28%
512 342.82 929.41 4.18% 11.35%

2,048 1,495.55 3,713.52 4.56% 11.33%
8,192 5,773.18 14,688.12 4.40% 11.21%

Table 11 The performance of Himeno on HA-PACS

#Cores Performance (GFlops) of peak
XMP Original XMP Original

1 5.20 5.83 24.98% 28.01%
4 19.32 24.05 23.23% 28.91%

16 33.92 34.97 10.19% 10.51%
64 129.13 136.72 9.70% 10.27%

256 513.46 534.24 9.64% 10.03%
1,024 1,571.91 1,571.66 7.38% 7.38%

The result of the HA-PACS in Table 11 indicates that the performance of XMP is equal to that of original. However, Table 10 shows
that the performance of XMP is worse than that of original on the K computer. Now, we are investigating why the performance is worse
on the K computer.

5

HPC Challenge Award Competition Class 2 at SC12

4. Conclusion
This report has investigated the productivity and the performance of the XMP PGAS language through the HPCC and Himeno bench-

marks. XMP has a rich set of functions based on global-view and local-view model that allows it to develop applications with a smaller
cost. On the K computer, the performance of the HPL and Himeno benchmarks written in XMP are not satisfactory. We are still working
on improving the performance by removing these programs, and we hope to have a chance to present our results on BoF at SC12.

Acknowledgments The specification of XMP has been designed by the XMP Specification Working Group of PC Cluster consor-
tium, Japan. This study was supported by the “Seamless and Highly productive Parallel Programming Environment for High performance
computing” project funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan. and is supported by the G8
Research Councils Initiative.

References
[1] The Riken Himeno CFD Benchmark: http://accc.riken.jp/2444.htm
[2] The XcalableMP Website: http://www.xcalablemp.org
[3] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato: Productivity and Performance of Global-View Programming with XcalableMP PGAS

Language, CCGrid 2012 - The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, Canada, May, 2012.
[4] Jinpil Lee: A Study on Productive and Reliable Programming Environment for Distributed Memory System, March, 2012.
[5] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel. The High Performance Fortran Handbook, MIT Press, 1994.
[6] Ken Kennedy, Charles Koelbel,Hans Zima: The rise and fall of High Performance Fortran: an historical object lesson, Proceedings of the third ACM

SIGPLAN conference on History of programming languages, Pages 7-1-7-22, 2007
[7] R. Numwich and J. Reid: Co-Array Fortran for parallel programming. Technical Report RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.
[8] R. Ponnusamy, A. Choudhary and G. Fox: Communication Overhead on CM5: An Experimental Performance Evaluation, Proc. Frontiers ’92, pp.108–115,

1992.
[9] HPC Challenge Website: http://icl.cs.utk.edu/hpcc/software/index.html
[10] FFTE: A Fast Fourier Transform Package: http://www.ffte.jp

6

