
Overview of XcalableMP project:
a next generation parallel language framework

for Petascale systems and
Experience from HPF

Mitsuhisa Sato
University of Tsukuba

2XMP project

Agenda

Lesson learned from HPF
Think about MPI …
History of HPF in Japan

XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel
Programming

Motivation
Concept and model
Some examples

3XMP project

Message Passing Model (MPI)
Message passing model was the dominant programming model in the past.

…. Yes.

Message passing is the dominant programming model today.
… Unfortunately, yes…

Will OpenMP be a programming model for future system?
OpenMP is only for shared memory model.

Are programmers satisfied with MPI?
yes…? Many programmers writes MPI.

Is MPI enough for parallelizing scientific parallel programs?

Application programmer’s concern is to get their answers faster!!
Automatic parallelizing compiler is the best, but …
many problems remain.

Why was MPI accepted and so successful?
Portability and Education, and more …?

4XMP project

The rise and fall of High Performance Fortran in Japan
～Lessons learned from HPF ～

(by Sakagami@NIFS and Murai@NEC)

(A similar retrospective paper was published by Prof. Ken Kennedy and
Zima)

Background of HPF (in 1992-1997, 1st draft)
MPI (message passing model) was (still now) an obstacle for
programming distributed memory systems.

Debugging MPI code is not easy, and update/modification of MPI program forces a
tough work for application people.
If MPI is only a solution to parallel machine, nobody wants to use parallel machines.
(EP is ok, but …)

There was a great demand for parallel programming languages!
Application people want just easy parallel programming environment with
reasonable (not necessarily perfect) performance.
OpenMP is just for shared memory systems.
Not practical alternative solutions. (Now, how about HPCS languages?!)

5XMP project

HPF history in Japan

Japanese supercomputer venders were interested in HPF and developed HPF
compiler on their systems.
NEC has been supporting HPF for Earth Simulator System.

Many workshops: HPF Users Group Meeting (HUG from 1996-2000), HFP intl.
workshop (in Japan, 2002 and 2005)

Japan HPF promotion consortium was organized by NEC, Hitatchi, Fujitsu …
HPF/JA proposal

Still survive in Japan, supported by Japan HPF promotion consortium

Compiler Availability
HPF/ES (HPF+HPF/JA+some extension for Earth Simulator)
HPF/SX, HPF/VPP, HPF/ES for PC clusters, fhpf (free software distributed by HPF
consortium)

6XMP project

“Pitfalls” and Lessons learned from HPF (1)

“Ideal” design policy of HPF
A user gives a small information such as data distribution and parallelism.
The compiler generates “good” communication and work-sharing
automatically.
By ignoring directives, parallelized code can be considered as the original
sequential code.
Large specifications were included to satisfy “theoretical” completeness
of the language model.

Lesson : “Don’t give too much expectation to users
which the technology could not meet.”

This “ideal” design policy had generated a great “expectation” from
users! But, the reality was not …
Initial (reference) implementation is important to attract people.

No reference implementation of HPF like MPICH in MPI standard.

7XMP project

“Pitfalls” and Lessons learned from HPF (2)

The base language of HPF was “immature” F90
A bad thing was that at the moment of HPF announced (mid 90’s), F90
was still immature.
Many application people had to rewrite programs in F90 in order to use
HPF

Re-write from F77 to F90 was not easy work.

No C/C++

Lesson :“Application people don’t want to rewrite their
programs. They are very conservative”

Sometimes, they complained that “I re-wrote my program by spending a
lot time, but the performance was not good!”
The reason why the performance of HPF was not so good was
sometimes due to the immaturity of F90 implementation.

8XMP project

“Pitfalls” and Lessons learned from HPF (3)
No explicit mean for performance tuning .

Everything depends on compiler optimization.
Users can specify more detail directives, but no information how much
performance improvement will be obtained by additional informations

INDEPENDENT for parallel loop
PROCESSOR + DISTRIBUTE
ON HOME

The performance is too much dependent on the compiler quality,
resulting in “incompatibility” due to compilers.

Lesson :“Specification must be clear. Programmers want
to know what happens by giving directives”

The way for tuning performance should be provided.

9XMP project

“Petascale” Parallel language design working group

Objectives
Making a draft on “petascale” parallel language for “standard” parallel
programming
To propose the draft to “world-wide” community as “standard”

Members
Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)
Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi)

More than 10 WG meetings have been held (Dec. 13/2007 for kick-off)

Funding for development
E-science project : “Seamless and Highly-productive Parallel Programming
Environment for High-performance computing” project funded by Ministry of
Education, Culture, Sports, Science and Technology, JAPAN.

Project PI: Yutaka Ishiakwa, co-PI: Sato and Nakashima(Kyoto), PO: Prof. Oyanagi
Project Period: 2008/Oct to 2012/Mar (3.5 years)

10XMP project

Requirements of “petascale” language

Performance
The user can achieve performance “equivalent to in MPI”
More than MPI – one-sided communication (remote memory copy)

Expressiveness
The user can express parallelism “equivalent in MPI” in easier way.
Task parallelism – for multi-physics

Optimizability
Structured description of parallelism for analysis and optimization
Should have some mechanism to map to hardware network topology

Education cost
For non-CS people, it should be not necessarily new, but practical

11XMP project

“Scalable” for Distributed Memory
Programming

SPMD as a basic execution model
A thread starts execution in each node
independently (as in MPI) .
Duplicated execution if no directive specified.
MIMD for Task parallelism

XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel Programming

http://www.xcalablemp.org

directives
Comm, sync and work-sharing

Duplicated execution

node0 node1 node2

Directive-based language extensions for familiar languages F90/C/C++
To reduce code-rewriting and educational costs.

“performance tunable” for explicit
communication and synchronization.

Work-sharing and communication occurs when directives are encountered
All actions are taken by directives for being “easy-to-understand” in
performance tuning (different from HPF)

12XMP project

Overview of XcalableMP
XMP supports typical parallelization based on the data parallel paradigm
and work sharing under "global view“

An original sequential code can be parallelized with directives, like OpenMP.

XMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

Two-sided comm. (MPI) One-sided comm.
(remote memory access)

Global view Directives

Local view
Directives

(CAF/PGAS)

Parallel platform (hardware+OS)

MPI
Interface

Array section
in C/C++

XMP
runtime
libraries

XMP parallel execution model

User applications

•Support common pattern
(communication and work-
sharing) for data parallel
programming
•Reduction and scatter/gather
•Communication of sleeve area
•Like OpenMPD, HPF/JA, XFP

13XMP project

Code Example

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] to t(i)

main(){
int i, j, res;
res = 0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code : incremental parallelization

data distribution

work sharing and data synchronization

14XMP project

The same code written in MPI
int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;

temp_res = 0;
for(i = llimit; i < ulimit; i++)

for(j = 0; j < 10; j++){
array[i][j] = func(i, j);
temp_res += array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

}

15XMP project

Nodes, templates and data/loop distributions

Idea inherited from HPF
Node is an abstraction of processor and memory in distributed memory
environment.

Template is used as a dummy array distributed on nodes

A global data is
aligned to the template

Loop iteration must also be
aligned to the template
by on-clause.

variable
V1

variable
V2

template
T1

nodes
P

Distribute directive

Align
directive

loop
L1

Loop
directive

variable
V3

template
T2

loop
L2

loop
L3

Align
directive

Align
directive

Loop
directive

Loop
directive

Distribute directive

#pragma xmp nodes p(32)

#pragma xmp template t(100)
#pragma distribute t(block) on p

#pragma xmp distribute array[i][*] to t(i)

#pragma xmp loop on t(i)

16XMP project

Array data distribution
The following directives specify a data distribution among nodes

#pragma xmp nodes p(*)
#pragma xmp template T(0:15)
#pragma xmp distribute T(block) on p
#pragma xmp align array[i] to T(i)

node1

node2

node3

node0

array[]

Reference to assigned to
other nodes may causes
error!!

Assign loop iteration
as to compute own regions

Communicate data between other nodes

17XMP project

Parallel Execution of “for” loop

array[]

node1

node2

node3

node0

Execute for loop to compute on array

Data region to be computed
by for loop

Execute “for” loop in parallel with affinity to array distribution by on-clause：
#pragma xmp loop on t(i)

Array distribution

#pragma xmp loop on t(i)
for(i=2; i <=10; i++)

#pragma xmp nodes p(*)
#pragma xmp template T(0:15)
#pragma xmp distributed T(block) on p
#pragma xmp align array[i] to T(i)

18XMP project

Data synchronization of array (shadow)

Exchange data only on “shadow” (sleeve) region
If neighbor data is required to communicate, then only sleeve
area can be considered.
example：b[i] = array[i-1] + array[i+1]

node1

node2

node3

node0

array[]

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

#pragma xmp shadow array[1:1]

#pragma xmp align array[i] to t(i)

19XMP project

XcalableMP example (Laplace, global view)
#pragma xmp nodes p(NPROCS)
#pragma xmp template t(1:N)
#pragma xmp distribute t(block) on p

double u[XSIZE+2][YSIZE+2],
uu[XSIZE+2][YSIZE+2];

#pragma xmp align u[i][*] to t(i)
#pragma xmp align uu[i][*] to t(i)
#pragma xmp shadow uu[1:1][0:0]

lap_main()
{
int x,y,k;

double sum;
…

for(k = 0; k < NITER; k++){
/* old <- new */

#pragma xmp loop on t(x)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
uu[x][y] = u[x][y];

#pragma xmp reflect uu
#pragma xmp loop on t(x)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
u[x][y] = (uu[x-1][y] + uu[x+1][y

uu[x][y-1] + uu[x][y+1])/4.0
}
/* check sum */
sum = 0.0;

#pragma xmp loop on t[x] reduction(+:sum)
for(x = 1; x <= XSIZE; x++)

for(y = 1; y <= YSIZE; y++)
sum += (uu[x][y]-u[x][y]);

#pragma xmp block on master
printf("sum = %g¥n",sum);

}

Definition of nodes

Template to define
distribution

Loop partitioning
And scheduling

Data synchronization

Use “align” to specify data
distribution
For data synchronization,
use “shadow” directive
specify sleeve area

20XMP project

Data synchronization of array (full shadow)
Full shadow specifies whole data replicated in all nodes

#pragma xmp shadow array[*]
reflect operation to distribute data to every nodes

#pragma reflect array
Execute communication to get data assigned to other nodes
Most easy way to synchronize

node1

node2

node3

node0

array[]

Now, we can access correct data by
local access !!

→ But, communication is expensive!

21XMP project

XcalableMP example (NPB CG, global view)
#pragma xmp nodes p(NPROCS)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
...
#pragma xmp align [i] to t(i) :: x,z,p,q,r,w
#pragma xmp shadow [*] :: x,z,p,q,r,w
...

/* code fragment from conj_grad in NPB CG */
sum = 0.0;
#pragma xmp loop on t(j) reduction(+:sum)

for (j = 1; j <= lastcol-firstcol+1; j++) {
sum = sum + r[j]*r[j];

}
rho = sum;

for (cgit = 1; cgit <= cgitmax; cgit++) {
#pragma xmp reflect p
#pragma xmp loop on t(j)

for (j = 1; j <= lastrow-firstrow+1; j++) {
sum = 0.0;
for (k = rowstr[j]; k <= rowstr[j+1]-1; k++

sum = sum + a[k]*p[colidx[k]];
}
w[j] = sum;

}
#pragma xmp loop on t(j)

for (j = 1; j <= lastcol-firstcol+1; j++) {
q[j] = w[j];

}

Define nodes

Define template
distributed onto nodes

Align to the
template for data
distribution
In this case, use
“full shadow”

Work sharing
Loop scheduling

Data synchronization, in
this case, all gather

22XMP project

XcalableMP Global view directives

Execution only master node
#pragma xmp block on master

Broadcast from master node
#pragma xmp bcast (var)

Barrier/Reduction
#pragma xmp reduction (op: var)
#pragma xmp barrier

Global data move directives for collective comm./get/put

Task parallelism
#pragma xmp task on node-set

23XMP project

XcalableMP Local view directives
XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space) feature
as "local view" programming.

The basic execution model of XcalableMP is SPMD
Each node executes the program independently
on local data if no directive

We adopt Co-Array as our PGAS feature.
In C language, we propose array section construct.
Can be useful to optimize the communication
Support alias Global view to Local view

For flexibility and extensibility, the execution model allows combining with
explicit MPI coding for more complicated and tuned parallel codes & libraries.

Need to interface to MPI at low level to allows the programmer to use MPI for
optimization
It can be useful to program for large-scale parallel machine.

For multi-core and SMP clusters, OpenMP directives can be combined into
XcalableMP for thread programming inside each node for hybrid programming.

int A[10], B[10];
#pragma xmp coarray [*]: A, B
…
A[:] = B[:]:[10];

int A[10]:
int B[5];

A[4:9] = B[0:4];

Array section in C

24XMP project

Position of XcalableMP

D
eg

re
e

of
 P

er
fo

rm
an

ce
 t

un
in

g

Cost to
obtain
Perfor-
mance

Programming cost

MPI

Automatic
parallelization

PGAS

HPF

chapel

XscalableMP

25XMP project

Final Remarks

What’s about HPCS languages?
If Java was accepted by HPC community and app people,…
Why were Parallel O-O Languages not accepted?

Why MPI accepted and so successful?
And OpenMP …

Why HPF was failed?

Cost, … Education … development … maintain codes …

Is it a technical problem?
Sure, it is. But, much more…

26XMP project

Summary
Our objective of “language working group” is to design “standard” parallel
programming language for petascale distributed memory systems

High productivity for distributed memory parallel programming
Not just for research, but collecting ideas for “standard”
Distributed memory programming “better than MPI” !!!

XcalableMP project: status and schedule
1Q/09 first draft of XcalableMP specification
2Q/09 β release, C language version
3Q/09 Fortran version (for SC09 HPC Challenge!)
Ask the international community for review of the specification

Features for the next
IO
Fault tolerant
Others …

http://www.xcalablemp.org

27XMP project

Q & A?

Thank you for your attention!!!

XcalableMP is under design. Any comments and
contributions will be very welcome!

