Overview of XcalableMP project:

a next generation parallel language framework

for Petascale systems and
Experience from HPF

Mitsuhisa Sato
University of Tsukuba

Agenda

s Lesson learned from HPF
= Think about MPI ...
= History of HPF in Japan

= XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel

Programming

= Motivation

= Concept and model
= Some examples

XMP project

Message Passing Model (MPI)

= Message passing model was the dominant programming model in the past.
=Yes.

= Message passing is the dominant programming model today.
= ... Unfortunately, yes...

= Will OpenMP be a programming model for future system?
= OpenMP is only for shared memory model.

= Are programmers satisfied with MPI?
= yes...? Many programmers writes MPI.

= Is MPI enough for parallelizing scientific parallel programs?

= Application programmer’s concern is to get their answers faster!!
= Automatic parallelizing compiler is the best, but ...
many problems remain.

Why was MPI accepted and so successful?
= Portability and Education, and more ...?

XMP project

The rise and fall of High Performance Fortran in Japan
Lessons learned from HPF
(by Sakagami@NIFS and Murai@NEC)

= (A similar retrospective paper was published by Prof. Ken Kennedy and
Zima)

= Background of HPF (in 1992-1997, 1st draft)

= MPI (message passing model) was (still now) an obstacle for
programming distributed memory systems.

= Debugging MPI code is not easy, and update/modification of MPI program forces a
tough work for application people.

= If MPI is only a solution to parallel machine, nobody wants to use parallel machines.
(EP is ok, but ...)

= There was a great demand for parallel programming languages!

= Application people want just easy parallel programming environment with
reasonable (not necessarily perfect) performance.

= OpenMP is just for shared memory systems.
= Not practical alternative solutions. (Now, how about HPCS languages?!)

XMP project

HPF history in Japan

= Japanese supercomputer venders were interested in HPF and developed HPF
compiler on their systems.

= NEC has been supporting HPF for Earth Simulator System.

= Many workshops: HPF Users Group Meeting (HUG from 1996-2000), HFP intl.
workshop (in Japan, 2002 and 2005)

= Japan HPF promotion consortium was organized by NEC, Hitatchi, Fujitsu ...
= HPF/JA proposal

= Still survive in Japan, supported by Japan HPF promotion consortium

= Compiler Availability
= HPF/ES (HPF+HPF/JA+some extension for Earth Simulator)

= HPF/SX, HPF/VPP, HPF/ES for PC clusters, fhpf (free software distributed by HPF
consortium)

XMP project S

“Pitfalls” and Lessons learned from HPF (1)

“Ideal” design policy of HPF
A user gives a small information such as data distribution and parallelism.

= The compiler generates “good” communication and work-sharing
automatically.

= By ignoring directives, parallelized code can be considered as the original
sequential code.

= Large specifications were included to satisfy “theoretical” completeness
of the language model.

m Lesson : “Don’t give too much expectation to users
which the technology could not meet.”

= This “ideal” design policy had generated a great “expectation” from
users! But, the reality was not ...

= Initial (reference) implementation is important to attract people.
= No reference implementation of HPF like MPICH in MPI standard.

XMP project 6

“Pitfalls” and Lessons learned from HPF (2)

= The base language of HPF was “immature” F90

= A bad thing was that at the moment of HPF announced (mid 90’s), FO0
was still immature.

= Many application people had to rewrite programs in F90 in order to use
HPF

= Re-write from F77 to F90 was not easy work.
= No C/C++

m Lesson :“Application people domn’ t want to rewrite their
programs. They are very conservative”

= Sometimes, they complained that “I re-wrote my program by spending a
lot time, but the performance was not good!”

= The reason why the performance of HPF was not so good was
sometimes due to the immaturity of FOO implementation.

XMP project 7

“Pitfalls” and Lessons learned from HPF (3)

= No explicit mean for performance tuning .
= Everything depends on compiler optimization.

= Users can specify more detail directives, but no information how much
performance improvement will be obtained by additional informations
« INDEPENDENT for parallel loop
= PROCESSOR + DISTRIBUTE
= ON HOME

= The performance is too much dependent on the compiler quality,
resulting in “incompatibility” due to compilers.

m Lesson :“Specification must be clear. Programmers want
to know what happens by giving directives”
= The way for tuning performance should be provided.

XMP project 8

“Petascale” Parallel language design working group

= Objectives
= Making a draft on “petascale” parallel language for “standard” parallel
programming
= To propose the draft to “world-wide” community as “standard”

= Members
= Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)

= Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)

= Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi)

= More than 10 WG meetings have been held (Dec. 13/2007 for kick-off)
= Funding for development
= E-science project : “Seamless and Highly-productive Parallel Programming
Environment for High-performance computing” project funded by Ministry of
Education, Culture, Sports, Science and Technology, JAPAN.
= Project PI: Yutaka Ishiakwa, co-Pl: Sato and Nakashima(Kyoto), PO: Prof. Oyanagi

= Project Period: 2008/0Oct to 2012/Mar (3.5 years)
XMP project 9

Requirements of “petascale” language

Performance
= The user can achieve performance “equivalent to in MPI”
= More than MPI - one-sided communication (remote memory copy)

Expressiveness
= The user can express parallelism “equivalent in MPI” in easier way.
= Task parallelism — for multi-physics

Optimizability
= Structured description of parallelism for analysis and optimization
= Should have some mechanism to map to hardware network topology

Education cost
= For non-CS people, it should be not necessarily new, but practical

XMP project 10

X =MP http://www.xcalablemp.org

XcalableMP : directive-based language eXtension
for Scalable and performance-tunable Parallel Programming

= Directive-based language extensions for familiar languages F90/C/C++
= To reduce code-rewriting and educational costs.

node0 nodel node2
= “Scalable” for Distributed Memory
Programming Duplicated execution
= SPMD as a basic execution model
= A thread starts execution in each node directives

independently (as in MPI) .
= Duplicated execution if no directive specified.
= MIMD for Task parallelism

Comm, sync and work-sharing
= “performance tunable” for explicit | |
communication and synchronization.
= Work-sharing and communication occurs when directives are encountered

= All actions are taken by directives for being “easy-to-understand” in
performance tuning (different from HPF)

XMP project 11

Overview of XcalableMP

= XMP supports typical parallelization based on the data parallel paradigm
and work sharing under "global view*

= An original sequential code can be parallelized with directives, like OpenMP.

= XMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

User applications

— ¥

Global view Directives

«Support common pattern

(communication and work- Array section

sharing) for data parallel in C/C++

programming 3

*Reduction and scatter/gather chal \./IeW
I Communication of sleeve area Directives
MP| eLike OpenMPD, HPF/JA, XFP (CAF/F)GAS)

Interface XMP parallel execution model

One-sided comm.
(remote memory access)

Two-sided comm. (MPI)

XMP proj Parallel platform (hardware+QOS)

Code Example

int array[YMAX][XMAX];

#pragma xmp nodes p(4)

#pragma xmp template t(YMAX) data distribution
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] to t(i)

AN

main(){ add to the serial code : incremental parallelization
Int1,J, res;
res = 0;

#pragma xmp loop on t(i) reduction(+:res)

for(i=0;i<10; i++)
for(j =0; j < 10; j++){ ' —
array/[i][j] = func(i, j); work sharing and data synchromzaﬂ@

res += array|[i][j];

}
}
XMP project 13
The same code written in MPI
int array[YMAX][XMAX];
main(int argc, char**argv){
intij,res,temp_res, dx,llimit,ulimit,size,rank;
MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
[limit = rank * dx;
if(rank !'= (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;
temp_res =0;
for(i = llimit; i < ulimit; i++)
for(j = 0; <10; j++){
array[i][j] = func(, j);
temp_res += array[i][j];
}
MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();
}
14

XMP |,

Nodes, templates and data/loop distributions

= ldea inherited from HPF
= Node is an abstraction of processor and memory in distributed memory

environment.
#pragma xmp nodes p(32)

= Template is used as a dummy array distributed on nodes
#pragma xmp template t(100) @
#pragma distribute t(block) on p V2 @
e
A global data is < Align @
. directive \V] Loop

aligned to the template Align Loop -0
directive directive directive
. . S . Align Loop
#pragma xmp distribute array[i][*] to t(i) directive directive

emplate

= Loop iteration must also be
. T2
aligned to the template N
Distribute directive
by on-clause. Distribute directive

#pragma xmp loop on t(i)
nodes

XMP project 15

Array data distribution

= The following directives specify a data distribution among nodes
o #Hpragma xmp nodes p(*)

#pragma xmp template T(0:15)

#pragma xmp distribute T(block) on p

#pragma xmp align array[i] to T(i)

o o o

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a0 | | | | I

nodes| | | E HEEN

Assign loop iteration
as to compute own regions

Reference to assigned to -
other nodes may causes

error!! B | communicate data between other nodes
XMP project 16

Parallel Execution of “for” loop

#Hpragma xmp nodes p(*)
#pragma xmp template T(0:15)
= Execute for loop to compute on array #pragma xmp distributed T(block) on |
#pragma xmp align array[i] to T(i)
#pragma xmp loop on t(i) Data region to be computed
for(i=2; i <=10; i++) by for loop

o 1 2 3 4 5 6 7/8 9 10 11 12 13 14 15

array[]

Execute “for” loop in parallel with affinity to array distribution by on-clause
#pragma xmp loop on t(i)

nodeO \ -

vocer [1] | [
\
vacez [] | AN

node3] —

Arr istribution
XMP project adet butio 17

Data synchronization of array (shadow)

= Exchange data only on “shadow” (sleeve) region

o If neighbor data is required to communicate, then only sleeve
area can be considered.

o example b[i] = array[i-1] + array[i+1]
#pragma xmp align array][i] to t(i)
9 10 11 12 13 14 15

o 1t 2 3 4 5 6 T 8
array[] [NN

#pragma xmp shadow array[1:1]

node2 . .
node3 , I

Programmer specifies sleeve region explicitly ’J

Directive #pragma xmp reflect array

XMP project 18

XcalableMP example (Laplace, global view)

#pragma xmp nodes p(NPROCS) —
#pragma xmp template t(1:N)
#pragma xmp distribute t(block) on p

double u[XSIZE+2][YSI1ZE+2], _
UULXSIZE+2][YSI1ZE+2];

#pragma xmp align u[i][*] to t(i) for(k = 0; k < NITER; k++){
#pragma xmp align uu[i][*] to t(i) /* old <- new */
#pragma xmp shadow uu[1:1][0:0] #pragma xmp loop on t(Xx)
for(x = 1; x <= XSIZE; Xx++)
lap_main() | Use “align” to specify data for(y = 1; y <= YSIZE; y++)
{ distribution uulx]lyl = ulx1Lyl;
int x,y,K; | For data synchronization fpragma xmp reflect uu
double sumj use “shadow” directive #pragma xmp loop on £()
’ ; for(x = 1; x <= XSIZE; x++)
specify sleeve area for(y = 1; y <= YSIZE; y++)

ulxdlyl = (uux-11Ly]l + uu[x+1]Ly
uux]y-1]1 + uu[x]Ly+1])/74.C
hs

/* check sum */
sum = 0.0;
#pragma xmp loop on t[x] reduction(+:sum)

for(x = 1; x <= XSIZE; x++)
for(y = 1; y <= YSIZE; y++)
sum += (uUIx]Lyl-ulx1LyD);

#pragma xmp block on master

XMP project }

Data synchronization of array (full shadow)

= Full shadow specifies whole data replicated in all nodes
» #pragma xmp shadow array[*]

= reflect operation to distribute data to every nodes
o #pragma reflect array
o Execute communication to get data assigned to other nodes

o Most easy way to synchronize _, But, communication is expensive!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

=)
o
Q
D
[

Now, we can access correct data by

XMP project local access ! 20

XcalableMP example (NPB CG, global view)

#pragma xmp nodes p(NPROCS) i
#pragma xmp template t(N) Define nodes

#pragma xmp distribute t(block) on p \\\\\\\\\\\\\\

#pragma xmp align [i] to t(i) :: X,z,p,q,r,w
#pragma xmp shadow [*] :: X,z,p,q,r,w

Define template
distributed onto nodes

/* code fragment from conj_grad in NPB CG */

Align to the sum = 0.0;
template for data #pragma xmp loop on t(j) reduction(+:sum)
for 3 = 1; j <= lastcol-firstcol+1; j++) {

distribution _ + (TE1%rliT-
In this case, use } sum = sum + rparrhl:
“full shadow” rho = sum:
for (cgit = 1; cgit <= cgitmax; cgit++) {
#pragma xmp reflect p
#pragma xmp loop on t(g)
for (J = 1; j <= lastrow-firstrow+1l; j++) {
Work sharing sum = 0.0;
Loop scheduling for (k = rowstr[j]; k <= rowstr[j+1]-1; k+
sum = sum + a[k]*p[colidx[k]]:
}
T wljl = sum;
Data synchronization, in }
this case, all gather #pragma xmp loop on t(j)
for (J = 1; j <= lastcol-firstcol+1; j++) {
XMP project abbl1 = wjl; 21

1

XcalableMP Global view directives

= Execution only master node
= #pragma xmp block on master

s Broadcast from master node
= #Hpragma xmp bcast (var)

= Barrier/Reduction
= #pragma xmp reduction (op: var)

= #pragma xmp barrier

= Global data move directives for collective comm./get/put

= Task parallelism
= #pragma xmp task on node-set

XMP project 22

XcalableMP Local view directives

XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space) feature
as "local view" programming.

= The basic execution model of XcalableMP is SPMD Array section in C
= Each node executes the program independently int A[10]:
on local data if no directive int B[5];

= We adopt Co-Array as our PGAS feature.

= In C language, we propose array section construct.
= Can be usc?ful to optlmlze the communlcatlon int A[10], B[10]:

= Support alias Global view to Local view #pragma xmp coarray [*]: A, B

A[4:9] = B[0:4];

A[:1 = B[:]:[10]:

For flexibility and extensibility, the execution model allows combining with
explicit MPI coding for more complicated and tuned parallel codes & libraries.

= Need to interface to MPI at low level to allows the programmer to use MPI for
optimization
= It can be useful to program for large-scale parallel machine.

For multi-core and SMP clusters, OpenMP directives can be combined into
XcalableMP for thread programming inside each node for hybrid programming.

XMP project 23

Position of XcalableMP

chape.

A
2
= MPI
3 XscalableMP GAS
Cost to g
obtain S
Perfor- £
mance S_J
S
()
o
o
@
(]

>

utomatic
pF aIIeIizaJion
Programming cost

XMP project 24

Final Remarks

= What’s about HPCS languages?
= If Java was accepted by HPC community and app people,...
= Why were Parallel O-O Languages not accepted?

= Why MPI accepted and so successful?

= And OpenMP ...
= Why HPF was failed?

= Cost, ... Education ... development ... maintain codes ...

= Is it a technical problem?
= Sure, it is. But, much more...

XMP project *
S umm ary http://www.xcalablemp.org

= Our objective of “language working group” is to design “standard” parallel
programming language for petascale distributed memory systems

= High productivity for distributed memory parallel programming
= Not just for research, but collecting ideas for “standard”
= Distributed memory programming “better than MPI” I!!

= XcalableMP project: status and schedule
= 1Q/09 first draft of XcalableMP specification
= 20Q/09 3 release, C language version
= 3Q/09 Fortran version (for SC09 HPC Challenge!)
= Ask the international community for review of the specification

= Features for the next
= |10
= Fault tolerant
= Others ...

XMP project 26

Thank you for your attention!!!

XcalableMP is under design. Any comments and
contributions will be very welcome!

Q & A?

XMP project

27

