
A Uniform Programming Model
for Petascale Computing

Barbara Chapman
University of Houston

High Performance Computing and Tools Group
http://www.cs.uh.edu/~hpctools

WPSE 2009, Tsukuba
March 25, 2009

Agenda

OpenMP 3.0

Challenges in Scaling OpenMP

Heterogeneous Systems / Nodes

3

The OpenMP Shared Memory API

High-level directive-based multithreaded programming
The user makes strategic decisions
Compiler figures out details
Threads communicate by sharing variables
Synchronization to order accesses and prevent data conflicts
Structured programming to reduce likelihood of bugs

#pragma omp parallel
#pragma omp for schedule(dynamic)

for (I=0;I<N;I++){
NEAT_STUFF(I);

} /* implicit barrier here */

The OpenMP ARB

OpenMP is maintained by the OpenMP Architecture
Review Board (the ARB), which

Interprets OpenMP
Writes new specifications - keeps OpenMP relevant
Works to increase the impact of OpenMP

Members are organizations - not individuals
Current members

Permanent: AMD, Cray, Fujitsu, HP, IBM, Intel, Microsoft, NEC,
PGI, SGI, Sun

Auxiliary: ASCI, cOMPunity, EPCC, KSL, NASA, RWTH Aachen

www.openmp.org
www.compunity.org

OpenMP 3.0 Introduces Tasks

Tasks explicitly created and processed

#pragma omp parallel
{
#pragma omp single
{
p = listhead ;
while (p) {

#pragma omp task
process (p)

p=next (p) ;
}

}
}

Each encountering
thread packages a
new instance of a
task (code and
data)
Some thread in the
team executes the
task

Synchronization provided by #pragma omp taskwait

Nested Parallelism in OpenMP 3.0

Per-thread internal control variables
Allows, for example, calling
omp_set_num_threads() inside a parallel
region.
Controls the team sizes for next level of parallelism
Different regions may have different defaults

Library routines to determine depth of nesting,
parent IDs, their team sizes etc.

omp_get_active_level()
omp_get_ancestor(level)
omp_get_teamsize(level)

Version 3.0 ratified by ARB May 2008

Agenda

OpenMP 3.0

Challenges in Scaling OpenMP

Heterogeneous Systems / Nodes

Multicore Is Everywhere

Small, but growing, number of cores sharing memory
Individual core may run one or more threads
Some resources shared between threads (L2 cache, memory
bandwidth): details depend on specific architecture
Introduces need to consider scalability of API and implementation

IBM Power4, 2001
Sun T-1 (Niagara), 2005

Intel rocks the boat 2005

Subteams of Threads?

• Rather like MPI’s groups of pre-existing processes and
operations among groups

• Worksharing among groups of pre-existing threads (i.e. a
subset of current team of threads)

Increases expressivity of single-level parallelism

Thread Subteam: original
thread team is divided into
several subteams, each of which
can work simultaneously.
Topologies could also be defined.

OpenMP Locality: Thread Subteams

Flexible code region/worksharing/synchronization extension

Low overhead because of static partition

Facilitates thread-core mapping for better data locality and less
resource contention

Supports heterogeneity, hybrid programming, composition

#pragma omp for on threads (m:n:k)

for (j=0; j<ProcessingNum;j++) {
#pragma omp for on threads (m:n:k)
for k=0; k<M;k++) { //on threads in subteam

... Process_data ();
} // barrier involves subteam only

BT-MZ Performance with Subteams

Platform: Columbia@NASA

Subteam: subset of existing team

Cart3D OpenMP Scaling

OpenMP version uses same domain decomposition strategy as MPI for
data locality, avoiding false sharing and fine-grained remote data access
OpenMP version slightly outperforms MPI version on SGI Altix 3700BX2,
both close to linear scaling.

4.7 M cell mesh Space Shuttle Launch Vehicle example

M∞ = 2.6
α = 2.09º
β = 0.8º

Locality, Locality, Locality

OpenMP does not permit explicit control over data
locality

Thread fetches data it needs into local cache

Implicit means of data layout popular on NUMA
systems

As introduced by SGI for Origin

“First touch”

Emphasis on privatizing data wherever
possible, and optimizing code for cache

This can work pretty well

But small mistakes may be costly

Ideas for Locality Support

Control thread placement as well as data locality
Data placement techniques:

Rely on implicit first touch or other system support
Possibly optimize e.g. via preprocessing step
Provide a “next touch” directive that would store data so
that it is local to next thread accessing it

Thread binding techniques:
Do this via system calls, command line
Programmer hints to “spread out”, “keep close together
Logical machine description?
Logical thread structure?

HPF-like data placement directives

“Places” to Enhance Data Locality?

The place concept is introduced in X10
A logical region in the system that data and
threads may have affinity with

Mapping to hardware nodes at runtime

Possible to allocate data within a place

Could add places to OpenMP
Associate worksharing constructs with a place

Could permit additional kind of shared memory

#pragma omp task OnPlace(place)

Example: Nested Parallelism and Places

#pragma omp place (N) // N is number of places

#pragma omp parallel num_threads(N) OnPlace(All)

{

int MyPlace = omp_get_place_num();

#pragma omp parallel OnPlace(MyPlace)

…

}

Place
1

Place
2

Omp parallel OnPlace(All)

Omp parallel OnPlace
(MyPlace)

Omp parallel OnPlace
(MyPlace)

Omp parallel OnPlace
(MyPlace)

Omp parallel OnPlace
(MyPlace)

Place
3

Place
4

Node1 Node2 Node3 Node4

Point-to-point
synchronization
might enable
interactions
between parallel
regions

Data Attributes Within a Place

“Place-shared” variable: a variable shared
only within threads in a place

Default is place-shared if parallel region is
associated with a single place

Place1

Place shared
variables

Global Shared variables

Private Private Private

Place2

Place shared
variables
Private Private Private

Place3

Place shared
variables
Private Private Private

Synchronization Matters

Reliance on global barriers, critical regions and locks
Critical region is very expensive

High overheads to protect often just a few memory accesses

It’s hard to get locks right
And they may also incur performance problems

Point-to-point synchronization could reduce overall waits

Condition variables might enable finer-grain
synchronization

Transactions might be an interesting addition
Most likely at implementation level only

Especially if hardware support provided

Offending
critical region
was rewritten

Courtesy of
R. Morgan,
NASA Ames

Cascade

Agenda

OpenMP 3.0

Challenges in Scaling OpenMP

Heterogeneous Systems / Nodes

A Heterogeneous World

Heterogeneous programming is currently very low-level
How are we going to program such systems in future?

If OpenMP is to be used to program a board with devices such as
accelerators, GPGUs, extensions are needed

How to identify code that should
be moved to accelerators?

How to share data between host
cores and other devices?

How is this compiled?

Debugged?

Hybrid Processor
System

generic
core

generic
core

stream
core

stream
core

Control and
data transfers

Copyright © 2007-8 ClearSpeed
Technology plc. All rights
reserved.

ClearSpeed Accelerator: CSX600
designed for HPC • Processor Core:

– 40.32 64-bit GFLOPS
– 10W typical
– 210MHz
– 96 PEs, 6 Kbytes each
– 8 redundant PEs

• SoC details:
– integrated DDR2 memory

controller with ECC support
– 128 Kbytes of SRAM

• Design details:
– IBM 130nm process
– 128 million transistors (47%

logic, 68% memory)

Streaming

Create streams for moving data in and out of
a special device or a place

Program is directed graph of tasks and streams

Popular for programming embedded systems

Needs to be supported in model for
heterogeneous systems

But also corresponds to structure of some high-
end applications

Implementation needs to take care of data motion
to/from limited device memories

How to Express Streaming?

#pragma omp CreateStreams s1(a), s2(b), s3(c)

#pragma omp task in(s1) out(s2)

converter(s1, s2);

#pragma omp task in(s2) out(s3)

compression(s2,s3);

}

Create
streams and
associate them
with data

Link streams with
tasks/worksharing to
define input and output
streams

The pair of tasks will be
executed in pipelined fashion

Alternative: have in/out clauses associated with parallel regions. The
variables may be passed via point-to-point synchronization constructs.

Example: Heterogeneous Extensions

PGI has introduced OpenMP-like directives
To specify regions whose loops will be compiled
for acceleration as far as possible

User may specify device, input and output data,
portions for sequential execution, unrolling,
SIMD..

Compiler attempts to translate for target device#pragma omp kernel in(b[0:N,0:N],c[0:N,0:N]) out(a[0:N,0:N])
{
#pragma omp parallel for // outer-level parallelism
for (int i=0; i<N; i++)

#pragma omp parallel for SIMD(32) // inner level parallelism
for (int j=0; j<N; j++)

a[i,j] = b[i][j] * c[i][j]
}

Note: PGI
does not
use OMP
pragmas

Example: CAPS HMPP

Declare hardware specific
implementations of functions
(HMPP codelets)

Can be specialized to the
execution context (data size,
…)

Codelet calls (RPC)
Synchronous, asynchronous
properties

Data transfers
Data prefetching

Synchronization barriers
Host CPU will wait until remote
computation is complete

Main
Memory

Application
data

General
Purpose

Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

CPU

CAPS: Multiple Devices

Use #D accelerators in parallel
#pragma omp parallel for, private (j)

for (jj=0;jj<#D;jj++){
for (j=jj*(n/#D); j<jj*(n/#D)+(n/#D); j++){

#pragma hmpp tospeedup1 callsite
simplefunc1(n,t1[j],t2,t3[j],alpha);

}
#pragma hmpp tospeedup1 release

}

Heterogeneous Large-Scale Systems?

Parallel region across machine, needs way to
specify mapping of shared data at this level

Inner level of parallel regions, mapped to
places by application developer

Shared data is at same place

In/out clauses to specify data that may be
transferred between regions

Additional levels of parallel regions to map
code to accelerators, also with in/out clauses

Summary

OpenMP needs extensions if it is to be a useful
high-end programming model
Locality support is essential

Heterogeneity is present in high-end, general-
purpose and embedded systems
To support heterogeneity, OpenMP also needs
some extensions
Placement of code, more data locality support

Compiler technology needs to be developed

