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Coarray Fortran (CAF) 1.0

• Explicitly-parallel extension of Fortran 90/95 

• Defined by Numrich and Reid

• Global address space SPMD parallel programming model
• One-sided communication

• Simple two-level memory model for locality management
• Local vs. remote memory

• Programmer control over performance-critical decisions
• Data partitioning
• Communication 

• Suitable for mapping to a range of parallel architectures
• Shared memory, message passing, hybrid
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CAF Programming Model Features

• SPMD process images
• Fixed number of images during execution
• Images operate asynchronously

• Both private and shared data
• real x(20, 20) a private 20x20 array in each image
• real y(20, 20) [*] a shared 20x20 array in each image

• Simple one-sided shared-memory communication 
• x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
• sync_all – a barrier and a memory fence
• sync_mem – a memory fence
• sync_team([notify], [wait])

• notify = a vector of process ids to signal
• wait = a vector of process ids to wait for, a subset of notify
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Accessing Remote Co-array Data
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Recent Activity in CAF

• Effort to incorporate CAF features into Fortran 2008 
standard as an extension of Fortran 2003 features
• Features fall short of what is truly needed
• We’ve published a detailed critique -- URL at end of the talk

• Largely based on the CAF 1.0 design
• Using the language of yesterday to solve the problems of 

tomorrow!

• This talk will focus on what we’ve been doing since 
then
• New features
• Support for new hardware

• This is work in progress!
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Partitioned Global Address Space (PGAS)

• Global Address Space
• One-sided communication (GET/PUT)

• Simpler than message passing

• Programmer-controlled performance factors:
• Data distribution and locality control

• Computation partitioning

• Communication placement

• Data movement and sync are language primitives
• Enables compiler-based communication optimizations
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The PGAS Model

• Data movement and synchronization are expensive

• Reduce overheads:
• Co-locate data with processors

• Aggregate multiple accesses to data

• Overlap communication and computation
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CAF 2.0 Design Goals

• Facilitate the construction of sophisticated parallel 
applications and parallel libraries

• Scale to emerging petascale architectures

• Exploit multicore processors

• Deliver top performance: enable users to avoid 
exposing or overlap communication latency

• Support development of portable high-performance 
programs

• Interoperate with legacy models such as MPI

• Support irregular and adaptive applications
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CAF 2.0 Design Principles

• Largely borrowed from MPI 1.1 design principles
• Safe communication spaces allow for modularization of codes 

and libraries by preventing unintended message conflicts
• Allowing group-scoped collective operations avoids wasting 

overhead in processes that are otherwise uninvolved (potentially 
running unrelated code)

• Abstract process naming allows for expression of codes in 
libraries and modules; it is also mandatory for dynamic 
multithreading

• User-defined extensions for message passing and collective 
operations interface support the development of robust libraries 
and modules

• The syntax for language features must be convenient
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Design Features Overview:
Orthogonal Concerns

• Participation: Teams of processors 

• Organization: Topologies

• Communication: Co-dimensions

• Mutual Exclusion: Extended support for locking

• Multithreading: Dynamic processes

• Coordination: Events

• Collective Synchronization: Barriers and team-based 
reductions
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Teams and Groups

• Partitioning and organizing images for computation
• Teams are local notions; groups are shared
• Creating a group from a team is a collective operation
• Groups are immutable once created; teams may be modified freely
• Collective operations work with groups

• Predefined teams (immutable): 
• CAF_WORLD: contains all images, numbered with rank 1..NPE
• CAF_SELF: contains just the local image; size is always 1

• Creating new teams
• Splitting or subsetting an existing team
• Intersection or union of existing teams
• Reordering images based on topology information

• Implementation note: team representation
• If each team member stores a vector of the process images in the 

team, quadratic space overhead, which is not scalable
• Distributed representation, caching of team members?
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Splitting Teams

• TEAM_Split (team, color, key, team_out)
• team: team of images (handle)
• color: control of subset assignment. Images with the same color are in 

the same new team
• key: control of rank assigment (integer)
• team_out: receives handle for this image’s new team

• Example:
• Consider p processes organized in a q × q grid
• Create separate teams each row of the grid

IMAGE_TEAM team
integer rank, row
rank = this_image(TEAM_WORLD)
row = rank/q
call team_split(TEAM_WORLD, row, rank, team)
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Topologies

• Permute the indices of a team or of all processors
• ZPL-style movement for programmer convenience 

• Really just functions on the processor numbers
• Binary tree example:

• Parent = MYPE/2; Left = MYPE*2; Right = MYPE*2 + 1
• x(i,:)[Left()] = x(:,i)[Right()] ! transpose x between siblings

• Cartesian topology is “just” a special case
• Very important in traditional HPC apps
• Modern apps are increasingly chaotic

• Irregular/unstructured mesh, AMR

• Graph topology to support the general case
• Arbitrary connectivity between processor nodes

• Dynamic modification of topologies (by changing teams) 
supports dynamic/adaptive applications
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Co-dimensions

• Declaration: 
• real :: X(:,:)[3,*]

• Fortran constraint: all leading co-dimensions MUST be 
constants (unless allocatable)

• Dimension with * fills in but may be ragged at the rightmost edge

• When is this useful?
• only provides right abstraction for dense arrays, simple boundaries
• only useful in practice when MOD(npe,3) == 0: brittle software

• Can effect the same functionality via topologies
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Mutual Exclusion

• Critical section from draft spec
• Named critical regions

• Static names - doesn’t work for fine-grained locking of dynamic 
data structures

• Built-in LOCK type
CAF_LOCK L

LOCK(L)

!…use data protected by L here…

UNLOCK(L)
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Lock Sets: Safer Multi-locking

• Big problem with locks: Deadlock
• Results from lock acquisition cycles

• Take a cue from two-phase locking
• Acquire all locks as one logical processing step

• Total ordering over locks avoids cycles between processes 
during acquisition

• Lockset abstraction supports this idiom for 
programmer convenience
• Add or remove individual locks to a runtime set

• Acquire operation on the set acquires individual locks in 
canonical order
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Dynamic Multithreading

• Spawn
• Create local or remote asynchronous threads by calling a 

procedure declared as a co-function
• Simple interface for function shipping

• Local threads can exploit multicore parallelism
• Remote threads can be created to avoid latency when 

manipulating remote data structures

• Finish
• Terminally strict synchronization for (nested) spawned sub-

images
• Orthogonal to procedures (like X10 and unlike Cilk)

• Exiting a procedure does not require waiting on spawned 
sub-images
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Safe Communication Spaces

• Event object for anonymous pairwise coordination

• Safe synchronization space: can allocate as many 
events as possible

• Notify: nonblocking, asynchronous signal to an event; 
a pairwise fence between sender and target image

• Wait: blocking wait for notification on an event or event 
set

• Waitany: return the ready event in an event set
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Multiple Communication Channels

• Multiple Communication Channels

Consider the following

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x= x

other work other work
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What if “Other Work” was Synchronized

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x= x

y[mod(me+1,P)]= y[mod(me+1,P)]=

=y =y
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Lack of Encapsulation Leads to Races

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x=x

y[mod(me+1,P)]= y[mod(me+1,P)]=

=y =y
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Collective Communication

• Sync: barrier within a team

• All the standard collective operations
• sum, product, maxloc, maxval, minloc, minval

• any, all, count, alltoall

• Coreduce: collective communication within a team

• User-defined reductions for extensibility
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Syntactic Convenience: Critical Sections

• Structured critical section construct for mutual 
exclusion

critical (Lock | Lockset)

… ! Critical region here

end critical

• Impossible to miss releasing a lock

• Does not support hand-over-hand locking

• Names vs. locks: static vs. dynamic
• Cannot implement dynamic data structures with a lock in each 

node if the set of locks is static!
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Syntactic Convenience: Team Namespaces

• Specify a default team for data access

• Retain ability to override with explicit team 
specifier

with team (air) ! sets default team

a(:)[1] = b(:)[2@ocean]

! Image 1 from the air team gets data

! from image 2 of the ocean team

end with
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Implementation Status

• CAF 1.0 compiler was based on Open64 framework
• Very large and fragile codebase
• Difficult to modify one piece without breaking something else

• New front-end compiler based on Rose
• Compiler and runtime library implementation in 

progress
• Thinnest possible runtime for maximal performance

• GasNet substrate for interprocess communication in 
the runtime

• Strategy for dope vector management through 
judicious use of Cray pointers
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Thank you!

• Our critique of coarray support in the Fortran 2008 
draft standard may be found online at:
• http://www.j3-fortran.org/doc/meeting/183/08-126.pdf

• For more information:
• Laksono Adhianto: laksono@rice.edu

• John Mellor-Crummey: johnmc@rice.edu

• Bill Scherer (me): scherer@rice.edu

• More details soon -- stay tuned!


