
CAF 2.0: A Next-generation 
Coarray Fortran

Laksono Adhianto, John Mellor-Crummey, 
and Bill Scherer

Department of Computer Science, Rice University

WPSE Workshop, Tsukuba, Japan
25 March 2009

QuickTime™ and a
 decompressor

are needed to see this picture.

22Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Outline

• Coarray Fortran 1.0 language recap

• Design Goals and Principles

• Design Feature Details

• Matters of Syntax

• Implementation Status



33Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Coarray Fortran (CAF) 1.0

• Explicitly-parallel extension of Fortran 90/95 

• Defined by Numrich and Reid

• Global address space SPMD parallel programming model
• One-sided communication

• Simple two-level memory model for locality management
• Local vs. remote memory

• Programmer control over performance-critical decisions
• Data partitioning
• Communication 

• Suitable for mapping to a range of parallel architectures
• Shared memory, message passing, hybrid

44Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

CAF Programming Model Features

• SPMD process images
• Fixed number of images during execution
• Images operate asynchronously

• Both private and shared data
• real x(20, 20) a private 20x20 array in each image
• real y(20, 20) [*] a shared 20x20 array in each image

• Simple one-sided shared-memory communication 
• x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
• sync_all – a barrier and a memory fence
• sync_mem – a memory fence
• sync_team([notify], [wait])

• notify = a vector of process ids to signal
• wait = a vector of process ids to wait for, a subset of notify



55Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Accessing Remote Co-array Data

66Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Recent Activity in CAF

• Effort to incorporate CAF features into Fortran 2008 
standard as an extension of Fortran 2003 features
• Features fall short of what is truly needed
• We’ve published a detailed critique -- URL at end of the talk

• Largely based on the CAF 1.0 design
• Using the language of yesterday to solve the problems of 

tomorrow!

• This talk will focus on what we’ve been doing since 
then
• New features
• Support for new hardware

• This is work in progress!



77Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Partitioned Global Address Space (PGAS)

• Global Address Space
• One-sided communication (GET/PUT)

• Simpler than message passing

• Programmer-controlled performance factors:
• Data distribution and locality control

• Computation partitioning

• Communication placement

• Data movement and sync are language primitives
• Enables compiler-based communication optimizations

88Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

The PGAS Model

• Data movement and synchronization are expensive

• Reduce overheads:
• Co-locate data with processors

• Aggregate multiple accesses to data

• Overlap communication and computation



99Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

CAF 2.0 Design Goals

• Facilitate the construction of sophisticated parallel 
applications and parallel libraries

• Scale to emerging petascale architectures

• Exploit multicore processors

• Deliver top performance: enable users to avoid 
exposing or overlap communication latency

• Support development of portable high-performance 
programs

• Interoperate with legacy models such as MPI

• Support irregular and adaptive applications

1010Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

CAF 2.0 Design Principles

• Largely borrowed from MPI 1.1 design principles
• Safe communication spaces allow for modularization of codes 

and libraries by preventing unintended message conflicts
• Allowing group-scoped collective operations avoids wasting 

overhead in processes that are otherwise uninvolved (potentially 
running unrelated code)

• Abstract process naming allows for expression of codes in 
libraries and modules; it is also mandatory for dynamic 
multithreading

• User-defined extensions for message passing and collective 
operations interface support the development of robust libraries 
and modules

• The syntax for language features must be convenient



1111Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Design Features Overview:
Orthogonal Concerns

• Participation: Teams of processors 

• Organization: Topologies

• Communication: Co-dimensions

• Mutual Exclusion: Extended support for locking

• Multithreading: Dynamic processes

• Coordination: Events

• Collective Synchronization: Barriers and team-based 
reductions

1212Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Teams and Groups

• Partitioning and organizing images for computation
• Teams are local notions; groups are shared
• Creating a group from a team is a collective operation
• Groups are immutable once created; teams may be modified freely
• Collective operations work with groups

• Predefined teams (immutable): 
• CAF_WORLD: contains all images, numbered with rank 1..NPE
• CAF_SELF: contains just the local image; size is always 1

• Creating new teams
• Splitting or subsetting an existing team
• Intersection or union of existing teams
• Reordering images based on topology information

• Implementation note: team representation
• If each team member stores a vector of the process images in the 

team, quadratic space overhead, which is not scalable
• Distributed representation, caching of team members?



1313Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Splitting Teams

• TEAM_Split (team, color, key, team_out)
• team: team of images (handle)
• color: control of subset assignment. Images with the same color are in 

the same new team
• key: control of rank assigment (integer)
• team_out: receives handle for this image’s new team

• Example:
• Consider p processes organized in a q × q grid
• Create separate teams each row of the grid

IMAGE_TEAM team
integer rank, row
rank = this_image(TEAM_WORLD)
row = rank/q
call team_split(TEAM_WORLD, row, rank, team)

1414Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Topologies

• Permute the indices of a team or of all processors
• ZPL-style movement for programmer convenience 

• Really just functions on the processor numbers
• Binary tree example:

• Parent = MYPE/2; Left = MYPE*2; Right = MYPE*2 + 1
• x(i,:)[Left()] = x(:,i)[Right()] ! transpose x between siblings

• Cartesian topology is “just” a special case
• Very important in traditional HPC apps
• Modern apps are increasingly chaotic

• Irregular/unstructured mesh, AMR

• Graph topology to support the general case
• Arbitrary connectivity between processor nodes

• Dynamic modification of topologies (by changing teams) 
supports dynamic/adaptive applications



1515Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Co-dimensions

• Declaration: 
• real :: X(:,:)[3,*]

• Fortran constraint: all leading co-dimensions MUST be 
constants (unless allocatable)

• Dimension with * fills in but may be ragged at the rightmost edge

• When is this useful?
• only provides right abstraction for dense arrays, simple boundaries
• only useful in practice when MOD(npe,3) == 0: brittle software

• Can effect the same functionality via topologies

1616Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Mutual Exclusion

• Critical section from draft spec
• Named critical regions

• Static names - doesn’t work for fine-grained locking of dynamic 
data structures

• Built-in LOCK type
CAF_LOCK L

LOCK(L)

!…use data protected by L here…

UNLOCK(L)



1717Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Lock Sets: Safer Multi-locking

• Big problem with locks: Deadlock
• Results from lock acquisition cycles

• Take a cue from two-phase locking
• Acquire all locks as one logical processing step

• Total ordering over locks avoids cycles between processes 
during acquisition

• Lockset abstraction supports this idiom for 
programmer convenience
• Add or remove individual locks to a runtime set

• Acquire operation on the set acquires individual locks in 
canonical order

1818Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Dynamic Multithreading

• Spawn
• Create local or remote asynchronous threads by calling a 

procedure declared as a co-function
• Simple interface for function shipping

• Local threads can exploit multicore parallelism
• Remote threads can be created to avoid latency when 

manipulating remote data structures

• Finish
• Terminally strict synchronization for (nested) spawned sub-

images
• Orthogonal to procedures (like X10 and unlike Cilk)

• Exiting a procedure does not require waiting on spawned 
sub-images



1919Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Safe Communication Spaces

• Event object for anonymous pairwise coordination

• Safe synchronization space: can allocate as many 
events as possible

• Notify: nonblocking, asynchronous signal to an event; 
a pairwise fence between sender and target image

• Wait: blocking wait for notification on an event or event 
set

• Waitany: return the ready event in an event set

2020Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Multiple Communication Channels

• Multiple Communication Channels

Consider the following

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x= x

other work other work



2121Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

What if “Other Work” was Synchronized

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x= x

y[mod(me+1,P)]= y[mod(me+1,P)]=

=y =y

2222Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Lack of Encapsulation Leads to Races

notify(mod(me+1,P)) notify(mod(me+1,P))

query(mod(me-1,P)) query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

notify(mod(me+1,P))
query(mod(me-1,P))

x[mod(me+1,P)]=x[mod(me+1,P)]=

= x=x

y[mod(me+1,P)]= y[mod(me+1,P)]=

=y =y



2323Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Collective Communication

• Sync: barrier within a team

• All the standard collective operations
• sum, product, maxloc, maxval, minloc, minval

• any, all, count, alltoall

• Coreduce: collective communication within a team

• User-defined reductions for extensibility

2424Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Syntactic Convenience: Critical Sections

• Structured critical section construct for mutual 
exclusion

critical (Lock | Lockset)

… ! Critical region here

end critical

• Impossible to miss releasing a lock

• Does not support hand-over-hand locking

• Names vs. locks: static vs. dynamic
• Cannot implement dynamic data structures with a lock in each 

node if the set of locks is static!



2525Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Syntactic Convenience: Team Namespaces

• Specify a default team for data access

• Retain ability to override with explicit team 
specifier

with team (air) ! sets default team

a(:)[1] = b(:)[2@ocean]

! Image 1 from the air team gets data

! from image 2 of the ocean team

end with

2626Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Implementation Status

• CAF 1.0 compiler was based on Open64 framework
• Very large and fragile codebase
• Difficult to modify one piece without breaking something else

• New front-end compiler based on Rose
• Compiler and runtime library implementation in 

progress
• Thinnest possible runtime for maximal performance

• GasNet substrate for interprocess communication in 
the runtime

• Strategy for dope vector management through 
judicious use of Cray pointers



2727Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009Bill Scherer, WPSE Workshop 2009, Tsukuba, Japan, 25 March 2009

Thank you!

• Our critique of coarray support in the Fortran 2008 
draft standard may be found online at:
• http://www.j3-fortran.org/doc/meeting/183/08-126.pdf

• For more information:
• Laksono Adhianto: laksono@rice.edu

• John Mellor-Crummey: johnmc@rice.edu

• Bill Scherer (me): scherer@rice.edu

• More details soon -- stay tuned!


