i

/ Xcrypt/[

Highly-Productive
Parallel Script Language

Hiroshi Nakashima
(ACCMS, Kyoto U.)

with the cooperation (_ who is really WOFkin(Zl
Takeshi Iwashita and

Tasuku Hiraishi

TAIRRIIY I91NdmOIIo0NnT Nt () Ren

TOIURII]Y 19700 mOTIoUnN S No0() N o0

P Contents

ZYet Another HPC Programming
= Not Only by XcalableMP

= Capability and Capacity Computing with
Script Language

= PDCA (Plan-Do-Check-Action) Cycle
= HP&P Script Language
= Design Goal and Concept
= Language System Architecture
= Current Status and Near Future Work

= Concluding Remark

Yet Another HPC Programming
Not Only by XcalableMP

= Use of a HPC system for R&D ...
= iS not just a single @C“eck-éﬁion am
= but has many PDCA cycles with many runs
= HPC application programming ...

= 1S not limited to from-scratch with Fortran,
C(++), Java, ... and with MPI, OpenMP, XMP...

= but includes glue-programming for;
= do-parallel executions of a program

= interfacing programs and tools
= PDCA cycle management

Yet Another HPC Programming
Example of C&C Computing

= Oceanographic Simulation
= Capability Computing s} s il

= Navier-Stokes + | il o e |
Convective Heat Xfer + =} 4

« Fortran + MPI, of course =«

» Capacity Computing

= Ensemble Simulation with - :

various initial/boundary
conditions

= Fortran + MPI, why???
= Not only unnecessary but also inefficient
=« Do it with Script Language !!!

Yet Another HPC Programming
C&C with Script Language

= Two-Layered Million-Scale Programming
€ 103 capability x 103 capacity = 10°

Script Program
for do-parallel exec
of parallel programs

[~

(lower layer
= capability type l
= XscalableMP '

upper layer

= capacity type <

= Highly-Productive
Parallel Script Lang|

Yet Another HPC Programming
Goal=Automated PDCA Cycle

= e.g. Ensemble-Based Data Assimilation
= repeated sim to find opt parameter

P: create huge size of input data D: submit huge number of jobs

™ . qsutt)) sim p%
G S0 == @ ez

n ?

g~ =P ¥ _
&L\ | = & 55

A: find the way to go next C: check huge size of output data.s

Al

y

I
[

Yet Another HPC Programming
L Goal=Automated PDCA Cycle

-/e.g. Ensemble-Based Data Assimilation
= repeated sim to find opt parameter

P: create huge size of input data D: submit huge number of jobs

oxer

b

P e— — [aciih cim n1 1

@pargms: @regu lts=
create_param(@space) - submit($job,@params)
= = = o

S S

use a_smart_search
search(’sim”>, ...)
L=

he W | T~ |

v

n?

TOBIITY Iainadmodrodne aad

@space= @eval=
explore(@results) _ evaluate(@results)

= | [[S —) ~
A: find the way to go next C: check huge sizw.

2 HP&P Script Language
' Why HP & P
-/Script Language

= inherently suitable for programming to run programs
= rich functionality for gluing programs
= easy-to-write for computer scientists

= Parallel Script Language
= functions to run programs in parallel
e.g. submit many jobs and wait for their completion
= Highly-Productive Parallel Script Language

= easy-to-write for computational scientists
= create input files from a template easily
= extract desired lines/words from output files easily

oxer

b

W

TOBIITY Iainadmodisdne aa4d

-

5
&
& 1

T

HP&P Script Language
I Design Goal

/Easy—to-Write

= even for guys who never hear of regular
expressions, object-oriented, ...

= Not requiring more than 10 lines for simple
parameter sweeps.
= Rich Functionality

= to implement easy-to-write magic by wizards
who supports Muggles.

= to glue applications and GUI (if you love it),
visualization tools, data capture tools, ...

rp

AT RITTY I Tndmosraancy nanygry X7

T

HP&P Script Language
L Design Concept
-/Must not be MS-Word

= easy-to-write does not mean nothing-to-
write.

= Must not be TEX
= rich functionality does not mean do-it-
yourself for everything.
= S0 IATEX in some sense

= reasonably easy-to-write and reasonably
customizable.

= encourages style-file wizards with powerful
built-ins and well-designed standard

interfaces. /—/ﬁ{,

rp

AT RITTY I Tndmosraancy nangry w7

b

b

HP&P Script Language
System Architecture

1st step

user script 2nd step

= ljab & job sek definition job interface library classes

- Opiogel defmltllon of param = job invocation/surveillance/kill
space exploration ﬁ = pre- and (asynchronous) post-
optional script for job input szl))

generation m data passing between script & jobs

- - = - m abstraction of job inputs/outputs
optional script for job output

evaluation 7

job management modules H

=PJO-engine + o)
. >(NQS D)
% Q 4—}(Torque >
8 E > PBS Pro %
- . . O o LSF
b t | D < ’(
Iob oomieton oorter | (U S = e p(s)
T >) il
r* =)
HP&P Script Language
How It Looks Like Now
package example;
use restrict; # module to control job concurrency
use parallel; # module to execute jobs in parallel
$myjobs=example->new();
$my jobs->{Jobset exec}= "*pathname of program executable' ;
$myjobs->{Jobset_args}= "'printf string for arguments'* or

&function_to_create_arg_string;
$myjobs->{Jobset before}= optional pre-job handler*;
$myjobs->{Jobset after}= optional post-job handler*;
$myjobs->{Par_njob}= number of jobs to submit;
$myjobs->{Par_after_all}= optional finalize handler*;
$myjobs->{Restrict _max}= number of jobsto run concurrently;
$myjobs->start(); # start jobs

still OO & busy

handler : “'string to eval or &function_to_invoke { Immature yet

HP&P Script Language
How It Can Look Like

#" package example;
use restrict; # module to control job concurrency

use parallel; # module to execute jobs in parallel
example->start(

exec=> "*pathname of program executable'",

args=> "'printf string for arguments'* or

&function_to_create_arg_string,

before=> optional pre-job handler*,

after=> optional post-job handler*,

njob=> number of jobs to submit,

after_al l=> optional finalize handler*,

max=> number of jobs to run concurrently,

)

*handler : *'string to eval** or &function_to_invoke

HP&P Script Language
How Built Now

gggkﬁgﬁ %ob;} job scheduler via
sub submit {...} job management
sub do {...} module

package jobset;
use job;

sub new {...}
sub before {...}
sub after {...}

sub start {...} [

package restrict; package parallel;

use restrict; use jobset;

use parallel; sub new {...}

sub new {...} sub before {...}

sub before {...} sub after {...}

sub after {...} sub after_all {...}
sub start {...}

package example;

use restrict;

use parallel;

$my jobs=example->new()

éﬁ&jobs—>start();

HP&P Script Language
L Next Step: 1/0 Interface
/ora Parameter-Sweep of a Simulation
= What they are doing
= edit input file for each job
= Submit each job manually with the input file for it
= view output file to get what they want
= What | am doing = write perl scripts ...
= to create job-specific input from template

= to do gsub with various input parameters
= to extract what 1 want to make CSV

= What we have to do
= find easiest application-specific way ...
= to create input, to submit job, to examine output
= with smallest effort to learn CS sorcery

= with most sophisticated tech of CS w—a—lﬂ_o’ck///_
s

b

¥

JoueI(ly JoTndumoolodns dod() N2

Concluding Remark
/m Let"'s Discuss Issues on ...
= Functionality v.s. Simplicity

= How do we design a language gradually
leading programmers from "hello world" to
the level at which they feel satisfaction?

= Learning v.s. Teaching

= How do we design a language which
programmers easily learn and/or designers
easily teach to them?

= Can you give a good name to our script

language system? (we got, xCrypt‘,—fw-
e

b

¥

goueI(ly IoTndumoolodns dody) N2

