
Xcrypt
Highly-Productive

Parallel Script Language
Hiroshi Nakashima
(ACCMS, Kyoto U.)

with the cooperation of
Takeshi Iwashita and

Tasuku Hiraishi

who is really working

Thanks, Costin !

Contents
Yet Another HPC Programming

Not Only by XcalableMP
Capability and Capacity Computing with
Script Language
PDCA (Plan-Do-Check-Action) Cycle

HP&P Script Language
Design Goal and Concept
Language System Architecture
Current Status and Near Future Work

Concluding Remark

Yet Another HPC Programming
Not Only by XcalableMP

Use of a HPC system for R&D ...
is not just a single run of a HPC program
but has many PDCA cycles with many runs

HPC application programming ...
is not limited to from-scratch with Fortran,
C(++), Java, ... and with MPI, OpenMP, XMP...
but includes glue-programming for;

do-parallel executions of a program
interfacing programs and tools
PDCA cycle management
...

plan-do-check-action

Yet Another HPC Programming
Example of C&C Computing

Oceanographic Simulation
Capability Computing

Navier-Stokes +
Convective Heat Xfer +
Fortran + MPI, of course

Capacity Computing
Ensemble Simulation with
various initial/boundary
conditions
Fortran + MPI, why???

Not only unnecessary but also inefficient
Do it with Script Language !!!

Yet Another HPC Programming
C&C with Script Language

Script Program
for do-parallel exec
of parallel programs lower layer

= capability type
= XscalableMP

upper layer
= capacity type
= Highly-Productive

Parallel Script Lang.

Two-Layered Million-Scale Programming
103 capability x 103 capacity = 106

Yet Another HPC Programming
Goal=Automated PDCA Cycle

qsub sim p1
qsub sim p2
qsub sim p3

...

D: submit huge number of jobs

C: check huge size of output dataA: find the way to go next

? ??

P: create huge size of input data

e.g. Ensemble-Based Data Assimilation
= repeated sim to find opt parameter

Yet Another HPC Programming
Goal=Automated PDCA Cycle

qsub sim p1
qsub sim p2
qsub sim p3

...

D: submit huge number of jobs

C: check huge size of output dataA: find the way to go next

? ??

P: create huge size of input data

@eval=
evaluate(@results)

@params=
create_param(@space)

@space=
explore(@results)

use a_smart_search
search(’sim’, ...)

@results=
submit($job,@params)

e.g. Ensemble-Based Data Assimilation
= repeated sim to find opt parameter

HP&P Script Language
Why HP & P

Script Language
inherently suitable for programming to run programs
rich functionality for gluing programs
easy-to-write for computer scientists

Parallel Script Language
functions to run programs in parallel
e.g. submit many jobs and wait for their completion

Highly-Productive Parallel Script Language
easy-to-write for computational scientists

create input files from a template easily
extract desired lines/words from output files easily

HP&P Script Language
Design Goal

Easy-to-Write
even for guys who never hear of regular
expressions, object-oriented, ...
not requiring more than 10 lines for simple
parameter sweeps.

Rich Functionality
to implement easy-to-write magic by wizards
who supports Muggles.
to glue applications and GUI (if you love it),
visualization tools, data capture tools, ...

HP&P Script Language
Design Concept

Must not be MS-Word
easy-to-write does not mean nothing-to-
write.

Must not be TEX
rich functionality does not mean do-it-
yourself for everything.

So L TEX in some sense
reasonably easy-to-write and reasonably
customizable.
encourages style-file wizards with powerful
built-ins and well-designed standard
interfaces.

A

HP&P Script Language
System Architecture

user script
job & job set definition
optional definition of param
space exploration

optional script for job input
generation
optional script for job output
evaluation

job interface library classes
job invocation/surveillance/kill
pre- and (asynchronous) post-
processing
data passing between script & jobs
abstraction of job inputs/outputs

exploration library
job management modules
（=PJO-engine + α)

job script generator
job submitter

job execution vigilance
job completion reporter jo

b
sc

he
du

le
r

in
te

rf
ac

e

NQS
Torque
PBS Pro

LSF
SGE

1st step
2nd step

HP&P Script Language
How It Looks Like Now

package example;
use restrict; # module to control job concurrency
use parallel; # module to execute jobs in parallel
$myjobs=example->new();
$myjobs->{Jobset_exec}= "pathname of program executable";
$myjobs->{Jobset_args}= "printf string for arguments" or

&function_to_create_arg_string;
$myjobs->{Jobset_before}= optional pre-job handler*;
$myjobs->{Jobset_after}= optional post-job handler*;
$myjobs->{Par_njob}= number of jobs to submit;
$myjobs->{Par_after_all}= optional finalize handler*;
$myjobs->{Restrict_max}= number of jobs to run concurrently;
$myjobs->start(); # start jobs

*handler : "string to eval" or &function_to_invoke

still OO & busy
immature yet

HP&P Script Language
How It Can Look Like

package example;
use restrict; # module to control job concurrency
use parallel; # module to execute jobs in parallel
example->start(

exec=> "pathname of program executable",
args=> "printf string for arguments" or

&function_to_create_arg_string,
before=> optional pre-job handler*,
after=> optional post-job handler*,
njob=> number of jobs to submit,
after_all=> optional finalize handler*,
max=> number of jobs to run concurrently,

);

*handler : "string to eval" or &function_to_invoke

HP&P Script Language
How Built Now

package example;
use restrict;
use parallel;
$myjobs=example->new();
...
$myjobs->start();

package restrict;
use restrict;
use parallel;
sub new {...}
sub before {...}
sub after {...}

package jobset;
use job;
sub new {...}
sub before {...}
sub after {...}
sub start {...}

package job;
sub new {...}
sub submit {...}
sub do {...}

package parallel;
use jobset;
sub new {...}
sub before {...}
sub after {...}
sub after_all {...}
sub start {...}

job scheduler via
job management
module

HP&P Script Language
Next Step: I/O Interface

For a Parameter-Sweep of a Simulation
What they are doing

edit input file for each job
submit each job manually with the input file for it
view output file to get what they want

What I am doing = write perl scripts ...
to create job-specific input from template
to do qsub with various input parameters
to extract what I want to make CSV

What we have to do
= find easiest application-specific way ...

to create input, to submit job, to examine output
with smallest effort to learn CS sorcery
with most sophisticated tech of CS warlock

Concluding Remark
Let's Discuss Issues on ...

Functionality v.s. Simplicity
How do we design a language gradually
leading programmers from "hello world" to
the level at which they feel satisfaction?

Learning v.s. Teaching
How do we design a language which
programmers easily learn and/or designers
easily teach to them?

Can you give a good name to our script
language system? We got, Xcrypt, from Costin.

