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Fault Tolerance and the MPI standard 
meet at the Ultra-Scale
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Outline

• Problem definition
– General

– MPI Specific

• General approach for making MPI fault 
tolerant

• Current status

• Is this all ?

Goal: Let MPI survive partial system 
failure
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Problem definition
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Problem definition – A bit more realistic
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Failure example – node failure
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• Problem: A component affecting a running 
MPI job is compromised (H/W or S/W)

• Question: Can the MPI application continue 
to run correctly ?
– Does the job have to abort ?

– If not, can the job continue to communicate ?

– Can there be a change in resources available to 
the job ?
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Why address this problem now ?

• There have been quite a few predictions over 
the last decade that we would reach a scale 
at which hardware and software failure rates 
would be so high, we would not be able to 
make effective use of these systems.
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Why address this problem now ? – cont’d

• This has not happened (?) 

Why should we believe it will happen 
this time ?

Actually, we have adjusted

Wasting resources

Automating simple forms of recovery (restart –
John Daly)
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Why address this problem now ? – cont’d

• Systems are getting much larger
• NCCS ~15000 (‘07) -> ~30,000 cores(‘08) -> 

~150,000 cores (end ’08)

• Impact on the applications is increasing

• As we go to 1,000,000+ processes being 
used in a single job, application MTBF will 
suffer greatly
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Why is Coordinated Checkpoint Restart 
not Sufficient ?*

Ron Oldfield, et al. – Modeling the Impact of Checkpoints on Next-
Generation Systems
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The Challenge

• We need approaches to dealing with fault-
tolerance at scale that will:
– Allow applications to harness full system 

capabilities

– Work well at scale
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Technical Guiding Principles

• End goal: Increase application MTBF
– Applications must be willing to use the solution

• No One-Solution-Fits-All
– Hardware characteristics

– Software characteristics

– System complexity

– System resources available for fault recovery

– Performance impact on application

– Fault characteristics of application

• Standard should not be constrained by 
current practice
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Why MPI ?

• The Ubiquitous standard parallel 
programming model used in scientific 
computing today

• Minimize disruption of the running 
application
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What role should MPI play in recovery ?

• MPI does NOT provide fault-tolerance

• MPI should enable the survivability of MPI 
upon failure.
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What role should MPI play in recovery ? –
Cont’d

• MPI provides:
– Communication primitives

– Management of groups of processes

– Access to the file system
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What role should MPI play in recovery ? –
Cont’d

• Therefore upon failure MPI should: (limited 
by system state)
– Restore MPI communication infrastructure to 

correct and consistent state

– Restore process groups to a well defined state

– Able to reconnect to file system

– Provide hooks related to MPI communications 
needed by other protocols building on top of MPI, 
such as
• Flush the message system
• Quiesce the network
• Send “piggyback” data 
• ?
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What role should MPI play in recovery ? –
Cont’d

• MPI is responsible for making the internal 
state of MPI consistent and usable by the 
application

• The “application” is responsible for restoring 
application state

Layered Approach
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CURRENT WORK

19
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Active Members in the Current MPI Forum

Argonne NL, Bull, Cisco,

Cray, Fujitsu,

HDF Group, HLRS,

HP, IBM, INRIA,

Indiana U., Intel, 

Lawrence Berkeley NL, 

Livermore NL, Los Alamos NL,

Mathworks, Microsoft, 

NCSA/UIUC, NEC, 

Oak Ridge NL , Ohio State U.,

Pacific NW NL,

Qlogic, Sandia NL,  

SiCortex, Sun Microsystems, 

Tokyo Institute of Technology,

U. Alabama Birmingham,

U. Houston,

U. Tennessee Knoxville,

U. Tokyo 

20



21 Managed by UT-Battelle
for the Department of Energy Graham_OpenMPI_SC08

Motivating Examples
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Collecting specific use case scenarios

• Process failure – Client/Server, with client 
member of inter-communicator
– Client process fails

– Server is notified of failure

– Server disconnects from Client inter-
communicator, and continues to run

– Client processes are terminated

22
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Collecting specific use case scenarios

• Process failure – Client/Server, with client 
member of intra-communicator
– Client process fails

– Processes communicating with failed process 
are notified of failure

– Application specifies response to failure
• Abort
• Continue with reduced process count, with the 

missing process being labled MPI_Proc_null in the 
communicator

• Replace the failed process (why not allow to increase 
the size of the communicator ?)

23
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Collecting specific use case scenarios

• Process failure – Tightly coupled 
simulation, with independent layered 
libraries
– Process fails

• Example application: POP (ocean simulation code) 
using conjugate gradient solver

– Application specifies MPI’s response to failure

24
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Design Details

• Allow for local recovery, when global 
recovery is not needed (scalability)
– Collective communications are global in nature, 

therefore global recovery is required for 
continued use of collective communications

• Delay recovery response as much as 
possible

• Allow for rapid and fully coordinated 
recovery
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Design Details – Cont’d

• Key component: Communicator
– A functioning communicator is required to 

continue MPI communications after failure

• Disposition of active communicators:
– Application specified

– MPI_COMM_WORLD must be functional to 
continue

• Handling of surviving processes
– MPI_comm_rank does not change

– MPI_Comm_size does not change
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Design Details – Cont’d

• Handling of failed processes
– Replace

– Discard (MPI_PROC_NULL)

• Disposition of active communications:
– With failed process: discard

– With other surviving processes – application 
defined on a per communicator basis

28 Managed by UT-Battelle
for the Department of Energy Graham_OpenMPI_SC08

Error Reporting Mechanisms – current 
status

– Errors are associated with communicators

– By default errors are returned from the affected 
MPI calls, are are returned synchronously

Example:
Ret1=MPI_Isend(comm=MPI_Comm_world, dest=3, 

…request=request3)
Link to 3 fails
Ret2=MPI_Isend(comm=MPI_Comm_world, dest=4, 

…request=request4)
Ret3=Wait(request=request4) //  success
Ret4=Wait(request=request3) // error returned in Ret
Can ask for more information about the failure

28
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• May request global event notification 

– Several open questions remain here
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• A collective call has been proposed to check 
on the status of the communicator
• No extra cost is incurred for consistency checks, 

unless requested (may be relevant for collective 
operations)

• Provides global communicator state just before 
the call is made

30
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Examples of proposed API modifications
Surviving Processes

• MPI_COMM_IRECOVER(ranks_to_restore, 
request, return_code)
– IN ranks_to_restore array of ranks to restore 

(struct)

– OUT request request object (handle)

– OUT return_code return error code(integer) 

• MPI_COMM_IRECOVER_COLLECTIVE(ranks
_to_restore, request, return_code)
– IN ranks_to_restore array of ranks to restore 

(struct)

– OUT request request ob ject (handle)

– OUT return_code return error code(integer) 
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Examples of proposed API modifications
Restored Processes

• MPI_RESTORED_PROCESS(generation, 
return_code)
• OUT generation Process generation (integer)

• OUT return_code return error code (integer)

• MPI_GET_LOST_COMMUNICATORS(comm_names, 
count, return_code) 
• OUT comm_names Array of communicators that may be 

restored (strings)

• OUT count Number of Communicators that may 
be restored (in- teger)

• OUT return_code return error code(integer)  
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Examples of proposed API modifications
Restored Processes – Cont’d

• MPI_COMM_REJOIN(comm_names, comm, 
return_code) 
• IN comm_names Communicator name (string)

• OUT comm communicator (handle)

• OUT return_code return error code(integer) 
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Open Questions

• How heavy handed do we need to be at the 
standard specification level to recover from 
failure in the middle of a collective operation 
?  Is this more than an implementation issue 
?  (Performance is the fly in the ointment)

• What is the impact of “repairing” a 
communicator on implementation of 
collective algorithms (do we have to pay the 
cost all the time?)

34
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Is this All ?

• Other aspects of fault tolerance
– Network

– Checkpoint/Restart

– File I/O

• End-to-end solution
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For involvement in the process see:

meetings.mpi-forum.org
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Backup slides


