
Task scheduling over
Heterogeneous Multicore Machines:

a Runtime Perspective

Raymond Namyst

“Runtime” group
INRIA Bordeaux Research Center

University of Bordeaux 1
France

Runtime Systems for
Petascale Computing Systems:

a Pessimistic View

Raymond Namyst

“Runtime” group
INRIA Bordeaux Research Center

University of Bordeaux 1
France

Outline

•� The frightening evolution of parallel architectures

–� Multicore + coprocessors + accelerators = heterogeneous architectures

•� New programming challenges

–� Hybrid programming models

•� Designing runtime systems for heterogeneous machines

–� Scheduling and Memory consistency

•� Challenges for the upcoming years

–� Current situation is terrible, but there is hope!

Multicore is a solid
architecture trend

•� Multicore chips

–� Architects’ answer to the
question: “What circuits
should we add on a die?”

�� No point in adding new
predicators or other
intelligent units…

–� Different from SMPs

�� Hierarchical chips

�� Getting really complex

–� Back to the CC-NUMA era?

Machines are going
heterogeneous

•� GPGPU are the new kids on
the block

–� Very powerful SIMD
accelerators

–� Successfully used for
offloading data-parallel
kernels

•� Other chips already feature
specialized harware

–� IBM Cell/BE

�� 1 PPU + 8 SPUs

–� Intel Larrabee

�� 48-core with SIMD units

I mean “really more
heterogeneous”

•� Programming model

–� Specialized instruction set

–� SIMD execution model

•� Memory

–� Size limitations

–� No hardware consistency

�� Explicit data transfers

•� Are we happy with that?

–� No, but it’s probably
unavoidable!

Heterogeneity is also
a solid trend

•� One interpretation of
“Amdalh’s law”

–� We will always need
powerful, general purpose
cores to speed up sequential
parts of our applications!

•� “Future processors will be
a mix of general purpose
and specialized cores”

 [anonymous source]

Mixed Large

and
Small Core

We have to get prepared!

•� Get ready for
tomorrow's

architectures

Intel TeraScale (80 cores)� IBM Cell (1+8 cores)�

AMD graphic processors

�� Understand today's
accelerators

New Programming
Challenges

Programming homogeneous
multicore machines

•� Why not just try to extend
existing solutions?

•� Shared-memory approach

–� Scalability

–� NUMA-awareness

–� Affinity-guided scheduling

•� Message passing
approach

–� Cache-friendly buffers

–� Topology-awareness

–� Collective

M.

CPU

CPU

CPU

CPU

Multicore

OpenMP

TBB
MPI

Cilk

Programming homogeneous
multicore machines

•� OpenMP

–� Scheduling in a NUMA context
(memory affinity, work stealing)

–� Memory management (page
migration)

•� MPI

–� NUMA-aware buffer
management

–� Efficient collective operations

•� Also several interesting
approaches

–� Intel TBB, SMP-superscalar,
etc.

–� Idea = we need fine-grain
parallelism!

M.

CPU

CPU

CPU

CPU

Multicore

OpenMP

TBB
MPI

Cilk

Our background: Thread Scheduling
over Multicore Machines

•� The Bubble Scheduling concept

–� Capturing application’s structure with
nested bubbles

–� Scheduling = dynamic mapping trees of
threads onto a tree of cores

•� The BubbleSched platform

–� Designing portable NUMA-aware
scheduling policies

�� Focus on algorithmic issues

–� Debugging/tuning scheduling
algorithms

�� FxT tracing toolkit + replay animation

�� [with Univ. New Hampshire, USA]

BubbleSched

Operating System

CPU CPU CPU CPU

Mem Mem

Our background: Thread Scheduling
over Multicore Machines

•� Designing multicore-friendly programs
with OpenMP

–� Parallel sections generate bubbles

–� Nested parallelism is welcome!

�� Lazy creation of threads

•� The ForestGOMP platform

–� Extension of GNU OpenMP

�� Binary compliant with existing applications

–� Excellent speedups with irregular
applications

�� Implicit 3D surface reconstruction [with iParla]

�� Tree depth > 15, more than 300,000 threads

•� BubbleSched also targeted by OMPi

–� [with Univ. of Ioannina, Greece]

void Node::compute(){�

 // approximate surface�
 computeApprox();�

 if(_error > _max_error) {�
 // precision not sufficient �
 // so divide and conquer�
 splitCell();�

 #pragma omp parallel for�
 for(int i=0; i<8; i++)�
 _children[i]->compute();�
 }�
}�

GNU OpenMP binary

libgomp

pthreads

Threads GOMP

Bubble-

Sched

GOMP Interface

Dealing with heterogenenous
accelerators

•� Specific APIs

–� CUDA, IBM SDK, …

–� No consensus

�� Specialized languages/
compilers

–� OpenCL?

•� Communication libraries

–� MCAPI, MPI

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Accelerators

ALF

CUDA
MCF

FireStream
Cg

Dealing with heterogenenous
accelerators

•� Language extensions

–� RapidMind, Sieve C++

–� HMPP

#pragma hmpp target=cuda

–� Cell Superscalar

#pragma css input(..) output(…)

•� Most approaches focus on
offloading

–� As opposed to scheduling M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Accelerators

ALF

CUDA
MCF

FireStream
Cg

Programming
Hybrid Architectures

•� Challenge = exploiting all
computing units
simultaneously

•� Either use a hybrid
programming model

–� E.g. OpenMP + HMPP +
Intel TBB + CUBLAS + MKL
+ …

•� Or use a uniform
programming model

–� That doesn’t exist yet…

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP

TBB

Accelerators

MPI
Cilk ?

ALF

CUDA
MCF

FireStream
Cg ?

In either case,
a common runtime
system is needed!

Runtime Systems for Heterogeneous
Multicore Architectures

•� Runtime systems

–� Perform dynamically what
can’t be done statically

–� Hide hardware complexity,
provide portability (of
performance?)

•� Just a matter of providing
yet another scheduling &
memory management
API?

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
libraries

Runtime Systems for Heterogeneous
Multicore Architectures

•� Programmers (usually)
know their application

–� Don't guess what we know!

–� Scheduling hints

•� Feedback is important

–� E.g. Performance counters

–� Adaptive applications?

•� Other Issues

–� Can we still find a unified
execution model?

–� How to determine the
appropriate task granularity?

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
libraries

Expressive interface

Execution Feedback

Towards a unified
execution model

•� We wanted our runtime to
fulfill the following
requirements:

–� Dynamically schedule tasks
on all processing units

�� See a pool of
heterogeneous cores

–� Avoid unnecessary data
transfers between
accelerators

�� Need to keep track of data
copies

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU
SPU SPU

SPU SPU

SPU

SPU

M.
A

A

B

B

The StarPU Runtime System
Cédric Augonnet, Samuel Thibault

High-level data management

Common driver interface (CUDA/Nvidia, Gordon/Cell)

OS / Vendor specific interfaces

Scheduling engine

Compilers, libraries

Mastering CPUs, GPUs, SPUs ...

 (hence the name: *PU)

High-Level Data Management

•� All we need is a Software DSM
system!

–� Consistency, replication,
migration

–� Concurrency, accelerator to
accelerator transfers

–� Memory reclaiming mechanism

�� Problem size > accelerator size

•� Data partitioned with filters

–� Various interfaces

�� BLAS, vector, CSR, CSC

–� Recursively applied

�� Structured data = tree

4,2,2,2,3

Scheduling Engine

•� Tasks are manipulated through
“codelet wrappers”

–� May provide multiple
implementations

�� Scheduling hints

–� Optional cost model per
implementation, priority, …

–� List data dependencies

�� Using the filter interface

–� Maybe automatically generated

•� Schedulers are plug-ins

–� Assign tasks to run queues

–� Dependencies and data
prefetching are hidden

CPU

code

GPU

code

SPU

code

Codelet wrp

Implementations

Input Data

Output Data

Callback

Evaluation
Blocked matrix multiplication

��Exploit heterogeneous platform

–� 4 CPUs + 1 GPU

��CPUs must not be neglicted!

�� Issues with 4 CPUs + 1 GPU

–� Busy CPU delays GPU management

–� Cache-sensitive CPU code

•� Trade-off : dedicate one core

quadcore Intel Xeon

+ nVidia Quadro FX4600

G
F

lo
p
s

Dedicate one CPU

Evaluation
Dense LU decomposition

Lack of parallelism

Cannot feed all *PUs with enough work

Some tasks are critical for the algorithm

Evaluation
Dense LU decomposition

Some tasks are critical for the algorithm

...Even worse with Cholesky !

Evaluation
Cholesky decomposition

Priorities -> gain ~ 10 %

•�

Evaluation
About the importance of performance models

Modeling workers' performance

 - “1 GPU = 10x faster than 1

CPU”

 - Reduce load imbalance

 - Fuzzy approximation

Modeling tasks execution time

 - Precise performance models

 - “mathematical” models

 - user-provided models

 - automatic “learning” for

 unknown codelets

What did we learn?

•� All computing units must be used simultaneously to achieve
high performance

–� “Pure offloading”is not sufficient

•� Performance models have a high impact over scheduling
quality

–� Rather easy for numerical kernel, but for other algorithms?

•� Finding the best task granularity is very difficult

–� Has to be decided dynamically!

Challenges for the
upcoming years

•� Integration with “traditionnal” multithreading solutions

–� We can’t seriously consider codeletizing the world…

–� E.g. support execution of OpenMP + HMPP (+ StarPU kernels) programs

•� Towards a tighter integration of hardware within runtime
systems

–� Adaptive, portable scheduling/optimization strategies

�� Linking hardware performance counters to application-level abstractions

�� Using hardware feedback to refine/correct scheduling directives

•� Enhance cooperation between runtime systems and compilers

–� Runtime support for “divisible tasks”

Challenges for the
upcoming years

•� There’s currently no consensus for a common runtime system

–� But future application will be composed of several types of bricks

Unified Multicore Runtime System

Topology-aware
Scheduling

Memory
Management

Synchronization

Task Management
(Threads/Tasklets/Codelets)

Data distribution
facilities

I/O services

OpenMP Intel TBB HMPP

MKL PLASMA

MPI
implementations

Thank you!

•� More information about Runtime

http://runtime.bordeaux.inria.fr

•� More information about StarPU and ForestGOMP

http://runtime.bordeaux.inria.fr/starpu

http://runtime.bordeaux.inria.fr/forestgomp

•� Software available on INRIA Gforge:

http://gforge.inria.fr/projects/pm2/

