
Disclaimer

• My opinions may not be my real opinions.
They are certainly not anybody else’s
opinions.

• I may not agree with my comments after
this panel

• I will ignore the questions of this panel

Software Challenges

• Existing code must scale
– Hundreds of thousands of processes/threads

– Exploit variety of accelerators:
• FPGAs, Cell Processors, GPUs, etc.

– Optimizations across and within nodes
• Addressing NUMA characteristics

• Parallel I/O
– Language support, good strategies.

•

Case Study: MPI and OpenMP in
a CFD Code

GenIDLEST (Tafti, VT)
–– Fluid Dynamics Application written Fluid Dynamics Application written

in MPI and OpenMPin MPI and OpenMP

–– OOn a Sun Fire X4600 8 CPUs, n a Sun Fire X4600 8 CPUs,
each with each with 22--core Opteron 885 core Opteron 885
2.6GHz SMP running 2.6GHz SMP running LinuxLinux

–– OpenMP OpenMP version of the codeversion of the code

(8 threads) (8 threads) runs significantly runs significantly
slower slower than MPI (8 processes)than MPI (8 processes)……
WHY???WHY???

Dev.rot1.extended.96_Closeup.wmv

Large Eddy Application

The Sun Fire X4600 16-core system

OpenUH Compiler

Understanding Why

Timings of Diff_coeff() MPI Version Timings of Diff_coeff() OpenMP
Version

The procedure Diff_coeff() was responsible for 20% of the execution time. We
found that this procedure was 2.3 times slower than the MPI code version.

Note: Graph scales are different

Understanding Why (cont.)

OpenMP version

MPI version

In the SGI Altix 3700 we observed
the same difference between MPI
and OpenMP versions.

Optimizations for Diff_coef()

OpenMP version of Diff_coeff after optimizations

• We made sure the shared
data structures were initialized
to use “first touch”.

•We privatized most of the shared
data of the procedure.

•We eliminated dynamic allocation
of shared data.

•After these optimizations, the
OpenMP version of Diff_coef()
Improved by a factor of 1.87
times.

Overall, performance of OpenMP
version nearly at MPI level

Lessons Learned

• Most performance problems were
related to (lack of) (data) locality

• An expert in one parallel programming
model may fail to get high levels of
performance with another model

• We need a single productive
programming model
– (and very good tools)

Let’s Call it Extended OpenMP

• Specification of data and computation locality
is critical now and likely more so in future
– We have to make it easy for application developer

to specify this
– At a suitable level of abstraction
– both implicit and explicit strategies might work

• Can we provide these features in future
OpenMP and retain its benefits?
– incremental development
– Compatible with sequential code
– Productive programming

Example: SGI OpenMP
Extensions

• SGI extensions to specify data distributions
• Basic mode allocates pages to memory on

nodes; saved where “most of data” is needed
• This is inaccurate, but it is compatible with

program translation on page-based system
• Alternate mode allocates data to processors

in HPF style
• This is accurate, but it destroys illusion of

shared memory and is harder to compile

Extended OpenMP Constructs

• This approach requires user to
– specify data distribution explicitly

– specify locus of thread execution

– load balancing problems must be addressed

!$SGI DISTRIBUTE array (CYCLIC (1))
!$OMP PARALLEL DO PRIVATE (i , active)
!$OMP& SHARED (level)
!$SGI+ AFFINITY (i) = DATA (array (i))

DO i = 1, max
IF (array (i) >= 1) then

active = ….
CALL solve (active, level, …)

END IF
END DO

Role of Compiler

• If we want productive programming, we
should not attempt to “eliminate compiler”

• But we should work hard to improve our
compiler technology (including dynamic)
– And make it easy for the user to specify

programs with a high degree of locality

• Compilers should be better integrated
– give information on translation to users and

tools

– Integrate with static and dynamic tools

Parallel Data Flow Analysis:
Motivation

Compiler
flags

-O3 -O3 –mp3

PRE-
example

7.42 46.8

NAS FT 18.45 26.17

NAS UA 130.31 220.15

Why the different performance?

OpenMP and Compiler
Optimizations

• Most compilers perform optimizations after
OpenMP constructs have been lowered
– Limits traditional optimizations

– Misses opportunities for high level optimizations

#pragma omp parallel
{
#pragma omp single

{
k = 1 ;

}
if (k==1) . . .

}

mpsp_status =
ompc_single(ompv_temp_gtid) ;
i f (mpsp_status == 1)
{

k = 1 ;
}
ompc_end_single (ompv_temp_gtid) ;
if (k==1) . . .

(b) The corresponding compiler translated
threaded code

(a) An OpenMP program with
a single construct

K==1?
Yes

K==1?
Unkown

Compiler Support for Performance
Analysis

• Automatic instrumentation:
– Improve instrumentation via IPA cost vector analysis.

• Saved compiler optimization logs:
– Interpret / understand performance data.

– Source-to-Source transformations.

IPA: Inlining Analysis
/ Selective Instrumentation

Instrumentation Phase

Source-to-Source
Transformations

Optimization Logs

The OpenUH Compiler

Performance Monitoring
Interface

• OpenMP ARB sanctioned
performance monitoring interface
for OpenMP

• Performance tools communicate
with OpenMP runtime library
through collector interface

• Designed to support statistical
sampling

• Support tracing with extensions

Compiler Translated
OpenMP Program

Collector API

Performance Tool

Automating the Process

SC’08 paper: “Capturing Performance Knowledge for Automated Analysis”

Compiler Tools

• There is potential to create tools from
compilers to address issues needed for
high performances.

• More integration with performance tools
needed and support for auto tuning.

• Tools should be able to “summarize”
information and capture “expert
knowledge”

• Compiler analyses need to support
parallel models.

